1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Author: Kamil Nizinski
// NOLINT(legal/copyright)
#ifdef LOCAL
#ifdef COLOR
#include "bits/cp_local_color.h"
#else
#include "bits/cp_local.h"
#endif
#else
#include "bits/stdc++.h"
#define debug_arr(arr_name, first, last)
#define debug(...)
#define cerr if (false) cerr
#define speed_of_cin_and_cout ios_base::sync_with_stdio(0), cin.tie(0)
#define local if (false)
#endif
#define ft first
#define sd second
#define emb emplace_back
#define sz(a) (static_cast<int>((a).size()))
using namespace std;  // NOLINT(build/namespaces)
typedef int64_t LL;
typedef uint64_t LLU;
typedef long double LD;
typedef pair<int, int> PII;
const int kMaxN = 10007, kMod = 1000000007;
int factorials[kMaxN], inverses_of_factorial_cache[kMaxN];
int binoms_cache[kMaxN][kMaxN];
int dp[kMaxN][kMaxN];
int pow_mod(int a, int x) {
  int result = 1;
  while (x > 0) {
    if (x & 1) {
      result = LL{1} * result * a % kMod;
      x--;
    } else {
      a = LL{1} * a * a % kMod;
      x >>= 1;
    }
  }
  return result;
}
int inverse_of_factorial(int k) {
  if (inverses_of_factorial_cache[k] != 0)
    return inverses_of_factorial_cache[k];
  inverses_of_factorial_cache[k] = pow_mod(factorials[k], kMod - 2);
  return inverses_of_factorial_cache[k];
}
int binom(int n, int k) {
  if ((k < 0) || (k > n)) return 0;
  if (binoms_cache[n][k] != 0) return binoms_cache[n][k];
  binoms_cache[n][k] = LL{1} * factorials[n] * inverse_of_factorial(k) % kMod
  * inverse_of_factorial(n - k) % kMod;
  return binoms_cache[n][k];
  // Maybe cache it? Done
}
void solve() {
  int n;
  cin >> n;
  // cout << "n read\n";
  // scanf("%d", &n);
  factorials[0] = 1;
  for (int i = 0; i < n; i++)
    factorials[i + 1] = LL{1} * factorials[i] * (i + 1) % kMod;
  // array<int, 3> radia;
  static int radia[3];
  // array<string, 3> centers;
  static string centers[3];
  // static char centers[3][kMaxN];
  for (int i = 0; i < 3; i++) {
    cin >> radia[i];
    // scanf("%d", &radia[i]);
    cin >> centers[i];
    // scanf("%s", centers[i]);
    debug(radia[i], centers[i]);
  }
  int result = 0;
  for (int i = 0; i < 3; i++)
    // Add the volume of this sphere.
    for (int dist = 0; dist <= radia[i]; dist++)
      result = (result + binom(n, dist)) % kMod;
  debug(result);
  for (int i = 0; i < 3; i++) {
    // Subtract the intersection of the other two spheres.
    int s = 0;
    int a = (i + 1) % 3, b = (i + 2) % 3;
    for (int j = 0; j < n; j++)
      if (centers[a][j] == centers[b][j]) s++;
    int d = n - s;
    for (int x = max(d - radia[b], 0); x <= min(radia[a], d); x++) {
      for (int y = 0; y <= min(radia[a] - x, radia[b] - (d - x)); y++) {
        result -= LL{1} * binom(d, x) * binom(s, y) % kMod;
        if (result < 0) result += kMod;
        debug(result);
      }
    }
  }
  debug(result);
  vector<PII> nums_unique_for_radius(3);
  int same_num = n;
  for (int i = 0; i < 3; i++) {
    nums_unique_for_radius[i] = {0, radia[i]};
    for (int j = 0; j < n; j++)
      if (centers[i][j] != centers[(i + 1) % 3][j]
        && centers[i][j] != centers[(i + 2) % 3][j])
        nums_unique_for_radius[i].ft++;
      same_num -= nums_unique_for_radius[i].ft;
  }
  nums_unique_for_radius.emb(same_num, -1);
  sort(nums_unique_for_radius.begin(), nums_unique_for_radius.end());
  debug(same_num, nums_unique_for_radius);
  int with_same_idx;
  for (int i = 0; i < 4; i++) {
    if (nums_unique_for_radius[i].sd == -1) {
      with_same_idx = 3 - i;
      break;
    }
  }
  PII with_same = nums_unique_for_radius[with_same_idx];
  nums_unique_for_radius.erase(nums_unique_for_radius.begin() + with_same_idx);
  for (int i = 0; i < 4; i++) {
    if (nums_unique_for_radius[i].sd == -1) {
      nums_unique_for_radius.erase(nums_unique_for_radius.begin() + i);
      break;
    }
  }
  debug(same_num, with_same);
  debug(nums_unique_for_radius);
  int max_dist_dp = same_num + with_same.ft;
  for (int i = 0; i <= max_dist_dp; i++) {
    for (int j = 0; j <= max_dist_dp; j++) {
      dp[i][j] = 0;
    }
  }
  for (int x = 0; x <= same_num; x++) {
    for (int y = 0; y <= with_same.ft; y++) {
      // y is how much I add on only the unique sphere
      // The first coordinate is the total distance so far on the unique sphere
      // The second coordinate--on the other two (it's the same for both of them).
      dp[x + y][x + with_same.ft - y] += LL{1} * binom(same_num, x) * binom(with_same.ft, y) % kMod;
      if (dp[x + y][x + with_same.ft - y] >= kMod)
        dp[x + y][x + with_same.ft - y] -= kMod;
    }
  }
  // debug(max_dist_dp);
  for (int i = 0; i <= max_dist_dp; i++) {
    for (int j = 0; j < max_dist_dp; j++) {
      dp[i][j + 1] += dp[i][j];
      if (dp[i][j + 1] >= kMod) dp[i][j + 1] -= kMod;
    }
  }
  for (int i = 0; i < max_dist_dp; i++) {
    for (int j = 0; j <= max_dist_dp; j++) {
      dp[i + 1][j] += dp[i][j];
      if (dp[i + 1][j] >= kMod) dp[i + 1][j] -= kMod;
    }
  }
  for (int i = 0; i <= max_dist_dp; i++) {
    debug(i);
    debug_arr(dp[i], 0, max_dist_dp + 1);
  }
  int intersection_size = 0;
  for (int x = 0; x <= nums_unique_for_radius[0].ft; x++) {
    for (int y = 0; y <= nums_unique_for_radius[1].ft; y++) {
      debug(x, y);
      int bound_on_the_third_one = with_same.sd - (nums_unique_for_radius[0].ft - x) - (nums_unique_for_radius[1].ft - y);
      int bound_on_these_two = min(nums_unique_for_radius[0].sd - x - (nums_unique_for_radius[1].ft - y), nums_unique_for_radius[1].sd - y - (nums_unique_for_radius[0].ft - x));
      debug(bound_on_the_third_one, bound_on_these_two);
      debug(min(max_dist_dp, bound_on_the_third_one), min(max_dist_dp, bound_on_these_two));
      if (bound_on_the_third_one >= 0 && bound_on_these_two >= 0) {
        debug(LL{1} * binom(nums_unique_for_radius[0].ft, x)
        * binom(nums_unique_for_radius[1].ft, y) % kMod * dp[min(max_dist_dp, bound_on_the_third_one)][min(max_dist_dp, bound_on_these_two)] % kMod);
        intersection_size += LL{1} * binom(nums_unique_for_radius[0].ft, x)
        * binom(nums_unique_for_radius[1].ft, y) % kMod * dp[min(max_dist_dp, bound_on_the_third_one)][min(max_dist_dp, bound_on_these_two)] % kMod;
        if (intersection_size >= kMod)
          intersection_size -= kMod;
        debug(intersection_size);
      }
    }
  }
  debug(intersection_size);
  result = (result + intersection_size) % kMod;
  cout << result << "\n";
  // printf("%d\n", result);
}

int main() {
  speed_of_cin_and_cout;
  int test_cases_num = 1;
//   cin >> test_cases_num;
  for (int i = 1; i <= test_cases_num; i++) {
    local if (test_cases_num > 1) cerr << "Test #" << i << ":\n";
    solve();
    local if (test_cases_num > 1) cerr << "End of test #" << i << ".\n";
  }
  return 0;
}