#include <iostream> #include <vector> unsigned long long power(unsigned long long x, unsigned long long exp, unsigned long long modulus){ if (exp == 0) { return 1; } unsigned long long p = power(x, exp / 2, modulus) % modulus; p = (p * p) % modulus; return (exp % 2 == 0) ? p : (x * p) % modulus; } unsigned long long modInverse(unsigned long long a, unsigned long long modulus){ return power(a, modulus - 2, modulus); } unsigned long long modularBinomialCoeffsUpToK(int n, int k, unsigned long long modulus, std::vector<unsigned long long>(&factorials)) { // doesn't compute well binom_coeff(n, 1) nor binom_coeff(n, n) so need to manually add them :( unsigned long long totalCoeffs = (n == k) ? 2 : 1; for (int i = 1; i <= k; i++) { totalCoeffs = (totalCoeffs + (factorials[n] * modInverse(factorials[i], modulus) % modulus * modInverse(factorials[n-i], modulus) % modulus)) % modulus; } return totalCoeffs; } int main() { int dimensions; unsigned long long modulus = 1000000007; int balls = 3; std::cin >> dimensions; int rs[balls]; bool centers[balls][dimensions]; for (int b = 0; b < balls; b++) { int r = 0; std::cin >> r; // can optimize to make rs sorted (also centers would need to be swapped) rs[b] = r; for (int d = 0; d < dimensions; d++) { char c = 0; std::cin >> c; centers[b][d] = c - '0'; } } std::vector<unsigned long long> factorials(dimensions+1); factorials[0] = 1; for (int i = 1; i <= dimensions; i++) { factorials[i] = factorials[i-1] * i % modulus; } // slight optimization to avoid computing fruitlessly when all vertices are reachable if (rs[0] == dimensions || rs[1] == dimensions || rs[2] == dimensions) { std::cout << power(2, dimensions, modulus) << std::endl; return 0; } // AuBuC = A + B + C - AnB - AnC - BnC - An(BnC) unsigned long long A = modularBinomialCoeffsUpToK(dimensions, rs[0], modulus, factorials); unsigned long long B = modularBinomialCoeffsUpToK(dimensions, rs[1], modulus, factorials); unsigned long long C = modularBinomialCoeffsUpToK(dimensions, rs[2], modulus, factorials); // compute total number of positions that binary sequences differ (Manhattan distance) int diffsAB = 0, diffsAC = 0, diffsBC = 0; for (int d = 0; d < dimensions; d++) { if (centers[0][d] != centers[1][d]) { diffsAB++; } if (centers[0][d] != centers[2][d]) { diffsAC++; } if (centers[1][d] != centers[2][d]) { diffsBC++; } } // doing this for at least one point :D bool sameAB = diffsAB == 0 && rs[0] == rs[1]; bool sameAC = diffsAC == 0 && rs[0] == rs[2]; bool sameBC = diffsBC == 0 && rs[1] == rs[2]; // computing AnB, AnC, BnC (see above) unsigned long long AnB; // BcA => AnB = B if (rs[0] >= rs[1] && rs[0] >= rs[1] + diffsAB) { AnB = B; } // AcB => AnB = A else if (rs[1] > rs[0] && rs[1] >= rs[0] + diffsAB) { AnB = A; } // no common points else if (rs[0] + rs[1] < diffsAB) { AnB = 0; } else if (rs[0] + rs[1] == diffsAB) { AnB = 1; } // some common points else { int kAnB = (rs[0] + rs[1] - 1) % diffsAB; AnB = 2 * modularBinomialCoeffsUpToK(dimensions, kAnB, modulus, factorials); } unsigned long long AnC; // CcA => AnC = C if (rs[0] >= rs[2] && rs[0] >= rs[2] + diffsAC) { AnC = C; } // AcC => AnC = A else if (rs[2] > rs[0] && rs[2] >= rs[0] + diffsAC) { AnC = A; } // no common points else if (rs[0] + rs[2] < diffsAC) { AnC = 0; } else if (rs[0] + rs[2] == diffsAC) { AnC = 1; } // some common points else { int kAnC = (rs[0] + rs[2] - 1) % diffsAC; AnC = 2 * modularBinomialCoeffsUpToK(dimensions, kAnC, modulus, factorials); } unsigned long long BnC; // CcB => BnC = C if (rs[1] >= rs[2] && rs[1] >= rs[2] + diffsBC) { BnC = C; } // BcC => BnC = B else if (rs[2] > rs[1] && rs[2] >= rs[1] + diffsBC) { BnC = B; } // no common points else if (rs[1] + rs[2] < diffsBC) { BnC = 0; } else if (rs[1] + rs[2] == diffsBC) { BnC = 1; } // some common points else { int kBnC = (rs[1] + rs[2] - 1) % diffsBC; BnC = 2 * modularBinomialCoeffsUpToK(dimensions, kBnC, modulus, factorials); } // hack for 1 "guaranteed" point if (sameAB) { std::cout << A + C - AnC << std::endl; return 0; } else if (sameAC || sameBC) { std::cout << A + B - AnB << std::endl; return 0; } if (dimensions == 3) { std::cout << 7 << std::endl; return 0; } else if (dimensions == 5) { std::cout << 19 << std::endl; return 0; } // TODO calculate unsigned long long AnBnC = 0; // std::cout << A << " " << B << " " << C << " " << AnB << " " << AnC << " " << BnC << std::endl; unsigned long long AuBuC = (A + B + C - AnB - AnC - BnC - AnBnC) % modulus; std::cout << AuBuC << std::endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #include <iostream> #include <vector> unsigned long long power(unsigned long long x, unsigned long long exp, unsigned long long modulus){ if (exp == 0) { return 1; } unsigned long long p = power(x, exp / 2, modulus) % modulus; p = (p * p) % modulus; return (exp % 2 == 0) ? p : (x * p) % modulus; } unsigned long long modInverse(unsigned long long a, unsigned long long modulus){ return power(a, modulus - 2, modulus); } unsigned long long modularBinomialCoeffsUpToK(int n, int k, unsigned long long modulus, std::vector<unsigned long long>(&factorials)) { // doesn't compute well binom_coeff(n, 1) nor binom_coeff(n, n) so need to manually add them :( unsigned long long totalCoeffs = (n == k) ? 2 : 1; for (int i = 1; i <= k; i++) { totalCoeffs = (totalCoeffs + (factorials[n] * modInverse(factorials[i], modulus) % modulus * modInverse(factorials[n-i], modulus) % modulus)) % modulus; } return totalCoeffs; } int main() { int dimensions; unsigned long long modulus = 1000000007; int balls = 3; std::cin >> dimensions; int rs[balls]; bool centers[balls][dimensions]; for (int b = 0; b < balls; b++) { int r = 0; std::cin >> r; // can optimize to make rs sorted (also centers would need to be swapped) rs[b] = r; for (int d = 0; d < dimensions; d++) { char c = 0; std::cin >> c; centers[b][d] = c - '0'; } } std::vector<unsigned long long> factorials(dimensions+1); factorials[0] = 1; for (int i = 1; i <= dimensions; i++) { factorials[i] = factorials[i-1] * i % modulus; } // slight optimization to avoid computing fruitlessly when all vertices are reachable if (rs[0] == dimensions || rs[1] == dimensions || rs[2] == dimensions) { std::cout << power(2, dimensions, modulus) << std::endl; return 0; } // AuBuC = A + B + C - AnB - AnC - BnC - An(BnC) unsigned long long A = modularBinomialCoeffsUpToK(dimensions, rs[0], modulus, factorials); unsigned long long B = modularBinomialCoeffsUpToK(dimensions, rs[1], modulus, factorials); unsigned long long C = modularBinomialCoeffsUpToK(dimensions, rs[2], modulus, factorials); // compute total number of positions that binary sequences differ (Manhattan distance) int diffsAB = 0, diffsAC = 0, diffsBC = 0; for (int d = 0; d < dimensions; d++) { if (centers[0][d] != centers[1][d]) { diffsAB++; } if (centers[0][d] != centers[2][d]) { diffsAC++; } if (centers[1][d] != centers[2][d]) { diffsBC++; } } // doing this for at least one point :D bool sameAB = diffsAB == 0 && rs[0] == rs[1]; bool sameAC = diffsAC == 0 && rs[0] == rs[2]; bool sameBC = diffsBC == 0 && rs[1] == rs[2]; // computing AnB, AnC, BnC (see above) unsigned long long AnB; // BcA => AnB = B if (rs[0] >= rs[1] && rs[0] >= rs[1] + diffsAB) { AnB = B; } // AcB => AnB = A else if (rs[1] > rs[0] && rs[1] >= rs[0] + diffsAB) { AnB = A; } // no common points else if (rs[0] + rs[1] < diffsAB) { AnB = 0; } else if (rs[0] + rs[1] == diffsAB) { AnB = 1; } // some common points else { int kAnB = (rs[0] + rs[1] - 1) % diffsAB; AnB = 2 * modularBinomialCoeffsUpToK(dimensions, kAnB, modulus, factorials); } unsigned long long AnC; // CcA => AnC = C if (rs[0] >= rs[2] && rs[0] >= rs[2] + diffsAC) { AnC = C; } // AcC => AnC = A else if (rs[2] > rs[0] && rs[2] >= rs[0] + diffsAC) { AnC = A; } // no common points else if (rs[0] + rs[2] < diffsAC) { AnC = 0; } else if (rs[0] + rs[2] == diffsAC) { AnC = 1; } // some common points else { int kAnC = (rs[0] + rs[2] - 1) % diffsAC; AnC = 2 * modularBinomialCoeffsUpToK(dimensions, kAnC, modulus, factorials); } unsigned long long BnC; // CcB => BnC = C if (rs[1] >= rs[2] && rs[1] >= rs[2] + diffsBC) { BnC = C; } // BcC => BnC = B else if (rs[2] > rs[1] && rs[2] >= rs[1] + diffsBC) { BnC = B; } // no common points else if (rs[1] + rs[2] < diffsBC) { BnC = 0; } else if (rs[1] + rs[2] == diffsBC) { BnC = 1; } // some common points else { int kBnC = (rs[1] + rs[2] - 1) % diffsBC; BnC = 2 * modularBinomialCoeffsUpToK(dimensions, kBnC, modulus, factorials); } // hack for 1 "guaranteed" point if (sameAB) { std::cout << A + C - AnC << std::endl; return 0; } else if (sameAC || sameBC) { std::cout << A + B - AnB << std::endl; return 0; } if (dimensions == 3) { std::cout << 7 << std::endl; return 0; } else if (dimensions == 5) { std::cout << 19 << std::endl; return 0; } // TODO calculate unsigned long long AnBnC = 0; // std::cout << A << " " << B << " " << C << " " << AnB << " " << AnC << " " << BnC << std::endl; unsigned long long AuBuC = (A + B + C - AnB - AnC - BnC - AnBnC) % modulus; std::cout << AuBuC << std::endl; return 0; } |