#include <algorithm> #include <iostream> #include <vector> using namespace std; namespace { using ll = long long; using Point = vector<char>; using Sphere = pair<Point, int>; constexpr int mod = 1'000'000'007; int mul(int a, int b) { return ll{a} * b % mod; } int mul(int a, int b, int c) { return mul(a, mul(b, c)); } int mul(int a, int b, int c, int d) { return mul(a, mul(b, mul(c, d))); } vector<vector<int>> choose; vector<vector<int>> pchoose; void init_choose(int d) { choose.resize(d + 1); pchoose.resize(d + 1); for (int n = 0; n <= d; ++n) { choose[n].resize(n + 1); choose[n][0] = choose[n][n] = 1; for (int k = 1; k < n; ++k) { choose[n][k] = (choose[n - 1][k] + choose[n - 1][k - 1]) % mod; } pchoose[n].resize(n + 1); pchoose[n][0] = 1; for (int k = 1; k <= n; ++k) { pchoose[n][k] = (pchoose[n][k - 1] + choose[n][k]) % mod; } } } int distance(Point const& p, Point const& q) { int d = p.size(); int res = 0; for (int i = 0; i < d; ++i) { if (p[i] != q[i]) ++res; } return res; } int solve(Sphere const& s) { int d = s.first.size(); int r = s.second; return pchoose[d][r]; } int solve(Sphere const& s1, Sphere const& s2) { auto const& [o1, r1] = s1; auto const& [o2, r2] = s2; int d = o1.size(); int b = distance(o1, o2); int a = d - b; if (b > r1 + r2) return 0; int res = 0; for (int y = 0; y <= b; ++y) { int x = min({r1 - y, r2 - (b - y), a}); if (x < 0) continue; res += mul(pchoose[a][x], choose[b][y]); res %= mod; } return res; } int solve(Sphere const& s1, Sphere const& s2, Sphere const& s3) { auto const& [o1, r1] = s1; auto const& [o2, r2] = s2; auto const& [o3, r3] = s3; int d = o1.size(); if (distance(o1, o2) > r1 + r2) return 0; if (distance(o1, o3) > r1 + r3) return 0; if (distance(o2, o3) > r2 + r3) return 0; int cnt[2][2] = {}; for (int i = 0; i < d; ++i) { int a1 = o1[i]; int a2 = o2[i]; int a3 = o3[i]; ++cnt[a2 ^ a1][a3 ^ a1]; } int res = 0; for (int x = 0; x <= cnt[0][1]; ++x) { if (x > r1) break; for (int y = 0; y <= cnt[1][0]; ++y) { if (x + y > r1) break; for (int z = 0; z <= cnt[1][1]; ++z) { int d1 = x + y + z; if (d1 > r1) break; int d2 = x + cnt[1][0] - y + cnt[1][1] - z; int d3 = cnt[0][1] - x + y + cnt[1][1] - z; int q = min({cnt[0][0], r1 - d1, r2 - d2, r3 - d3}); if (q < 0) continue; res += mul(pchoose[cnt[0][0]][q], choose[cnt[0][1]][x], choose[cnt[1][0]][y], choose[cnt[1][1]][z]); res %= mod; } } } return res; } } int main() { iostream::sync_with_stdio(false); cin.tie(nullptr); int d; cin >> d; init_choose(d); vector<Sphere> spheres(3); for (auto& s: spheres) { cin >> s.second; s.first.resize(d); for (auto& x: s.first) { char c; cin >> c; x = c - '0'; } } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { if (lhs.first != rhs.first) return lhs.first < rhs.first; return lhs.second > rhs.second; }; sort(spheres.begin(), spheres.end(), cmp); } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { return lhs.first == rhs.first; }; spheres.erase(unique(spheres.begin(), spheres.end(), cmp), spheres.end()); } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { return lhs.second < rhs.second; }; sort(spheres.begin(), spheres.end(), cmp); } int n = spheres.size(); int res = 0; for (int i = 0; i < n; ++i) { res += solve(spheres[i]); res %= mod; for (int j = i + 1; j < n; ++j) { res += mod; res -= solve(spheres[i], spheres[j]); res %= mod; for (int k = j + 1; k < n; ++k) { res += solve(spheres[i], spheres[j], spheres[k]); res %= mod; } } } cout << res << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | #include <algorithm> #include <iostream> #include <vector> using namespace std; namespace { using ll = long long; using Point = vector<char>; using Sphere = pair<Point, int>; constexpr int mod = 1'000'000'007; int mul(int a, int b) { return ll{a} * b % mod; } int mul(int a, int b, int c) { return mul(a, mul(b, c)); } int mul(int a, int b, int c, int d) { return mul(a, mul(b, mul(c, d))); } vector<vector<int>> choose; vector<vector<int>> pchoose; void init_choose(int d) { choose.resize(d + 1); pchoose.resize(d + 1); for (int n = 0; n <= d; ++n) { choose[n].resize(n + 1); choose[n][0] = choose[n][n] = 1; for (int k = 1; k < n; ++k) { choose[n][k] = (choose[n - 1][k] + choose[n - 1][k - 1]) % mod; } pchoose[n].resize(n + 1); pchoose[n][0] = 1; for (int k = 1; k <= n; ++k) { pchoose[n][k] = (pchoose[n][k - 1] + choose[n][k]) % mod; } } } int distance(Point const& p, Point const& q) { int d = p.size(); int res = 0; for (int i = 0; i < d; ++i) { if (p[i] != q[i]) ++res; } return res; } int solve(Sphere const& s) { int d = s.first.size(); int r = s.second; return pchoose[d][r]; } int solve(Sphere const& s1, Sphere const& s2) { auto const& [o1, r1] = s1; auto const& [o2, r2] = s2; int d = o1.size(); int b = distance(o1, o2); int a = d - b; if (b > r1 + r2) return 0; int res = 0; for (int y = 0; y <= b; ++y) { int x = min({r1 - y, r2 - (b - y), a}); if (x < 0) continue; res += mul(pchoose[a][x], choose[b][y]); res %= mod; } return res; } int solve(Sphere const& s1, Sphere const& s2, Sphere const& s3) { auto const& [o1, r1] = s1; auto const& [o2, r2] = s2; auto const& [o3, r3] = s3; int d = o1.size(); if (distance(o1, o2) > r1 + r2) return 0; if (distance(o1, o3) > r1 + r3) return 0; if (distance(o2, o3) > r2 + r3) return 0; int cnt[2][2] = {}; for (int i = 0; i < d; ++i) { int a1 = o1[i]; int a2 = o2[i]; int a3 = o3[i]; ++cnt[a2 ^ a1][a3 ^ a1]; } int res = 0; for (int x = 0; x <= cnt[0][1]; ++x) { if (x > r1) break; for (int y = 0; y <= cnt[1][0]; ++y) { if (x + y > r1) break; for (int z = 0; z <= cnt[1][1]; ++z) { int d1 = x + y + z; if (d1 > r1) break; int d2 = x + cnt[1][0] - y + cnt[1][1] - z; int d3 = cnt[0][1] - x + y + cnt[1][1] - z; int q = min({cnt[0][0], r1 - d1, r2 - d2, r3 - d3}); if (q < 0) continue; res += mul(pchoose[cnt[0][0]][q], choose[cnt[0][1]][x], choose[cnt[1][0]][y], choose[cnt[1][1]][z]); res %= mod; } } } return res; } } int main() { iostream::sync_with_stdio(false); cin.tie(nullptr); int d; cin >> d; init_choose(d); vector<Sphere> spheres(3); for (auto& s: spheres) { cin >> s.second; s.first.resize(d); for (auto& x: s.first) { char c; cin >> c; x = c - '0'; } } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { if (lhs.first != rhs.first) return lhs.first < rhs.first; return lhs.second > rhs.second; }; sort(spheres.begin(), spheres.end(), cmp); } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { return lhs.first == rhs.first; }; spheres.erase(unique(spheres.begin(), spheres.end(), cmp), spheres.end()); } { auto cmp = [](Sphere const& lhs, Sphere const& rhs) { return lhs.second < rhs.second; }; sort(spheres.begin(), spheres.end(), cmp); } int n = spheres.size(); int res = 0; for (int i = 0; i < n; ++i) { res += solve(spheres[i]); res %= mod; for (int j = i + 1; j < n; ++j) { res += mod; res -= solve(spheres[i], spheres[j]); res %= mod; for (int k = j + 1; k < n; ++k) { res += solve(spheres[i], spheres[j], spheres[k]); res %= mod; } } } cout << res << endl; return 0; } |