1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>

#include <algorithm>
#include <limits>
#include <vector>

// #define SHOWDEBUG

struct hypercube_t {
  unsigned int radius;
  std::vector<char> center;
};

static const uint32_t MODULUS = 1000 * 1000 * 1000 + 7;
static const size_t MAX_N = 10 * 1000;

std::vector<uint32_t> pascals[10];
template <typename T>
auto cont_size(const T& t) -> decltype(t.size()) {
  return t.size();
}

template <typename T>
auto cont_size(T& t) -> decltype(t.size()) {
  return t.size();
}

template <typename T, size_t S>
auto cont_size(const T (&t)[S]) -> size_t {
  return S;
}

template <typename T, size_t S>
auto cont_size(T (&t)[S]) -> size_t {
  return S;
}

hypercube_t read_hypercube(unsigned int dimensions) {
  unsigned int radius;
  scanf("%u", &radius);

  // Skip whitespace
  int c;
  while (!isdigit(c = getc(stdin)))
    ;
  ungetc(c, stdin);

  std::vector<char> center;
  center.resize((size_t)dimensions);
  fread(center.data(), 1, dimensions, stdin);

  return hypercube_t{radius, std::move(center)};
}

inline uint32_t mod_mul(uint32_t a, uint32_t b) {
  return (uint32_t)(((uint64_t)a * (uint64_t)b) % (uint64_t)MODULUS);
}

inline uint32_t mod_add(uint32_t a, uint32_t b) {
  return (a + b) % MODULUS;
}

inline uint32_t mod_neg(uint32_t x) {
  return (x == 0) ? 0 : (MODULUS - x);
}

template <typename T>
void print_container(const T& cont,
                     size_t end = std::numeric_limits<size_t>::max()) {
  printf("[");
  for (size_t i = 0; i < end && i < cont_size(cont); i++) {
    if (i > 0) {
      printf(", ");
    }
    printf("%d", (int)cont[i]);
  }
  printf("]\n");
}

uint32_t point_distance(const std::vector<char>& a,
                        const std::vector<char>& b) {
  uint32_t result = 0;
  for (unsigned int i = 0; i < a.size(); i++) {
    result += (uint32_t)((a[i] != b[i]) ? 1 : 0);
  }
  return result;
}

uint32_t volume_of_hypersphere(const std::vector<uint32_t>& tri,
                               unsigned int radius) {
  uint32_t sum = 0;
  for (unsigned int i = 0; i <= radius; i++) {
    sum = mod_add(sum, tri[i]);
  }

#ifdef SHOWDEBUG
  printf("Single volume: %u\n", sum);
#endif

  return sum;
}

uint32_t volume_of_intersection_of_hypersphere(unsigned int base,
                                               int32_t g0,
                                               int32_t g1,
                                               unsigned int r1,
                                               unsigned int r2) {
  uint32_t sum = 0;
  for (int32_t i = 0; i <= g0; i++) {
    for (int32_t j = 0; j <= g1; j++) {
      const int32_t budget1 = (int32_t)r1 - i - j;
      const int32_t budget2 = (int32_t)r2 - i - (g1 - j);

      if (budget1 < 0 || budget2 < 0) {
        continue;
      }

      sum = mod_add(sum, mod_mul(pascals[base + 0][i], pascals[base + 1][j]));
    }
  }

#ifdef SHOWDEBUG
  printf("Intersection of volumes: %u\n", sum);
#endif

  return sum;
}

uint32_t volume_of_intersection_of_all(int32_t g0,
                                       int32_t g1,
                                       int32_t g2,
                                       int32_t g3,
                                       unsigned int r1,
                                       unsigned int r2,
                                       unsigned int r3) {
  uint32_t sum = 0;

  for (int32_t i = 0; i <= g0; i++) {
    for (int32_t j = 0; j <= g1; j++) {
      for (int32_t k = 0; k <= g2; k++) {
        for (int32_t l = 0; l <= g3; l++) {
          const int32_t budget1 = (int32_t)r1 - i - j - k - l;
          const int32_t budget2 = (int32_t)r2 - i - (g1 - j) - k - (g3 - l);
          const int32_t budget3 = (int32_t)r3 - i - j - (g2 - k) - (g3 - l);

          if (budget1 < 0 || budget2 < 0 || budget3 < 0) {
            continue;
          }

          sum = mod_add(sum, mod_mul(mod_mul(pascals[0][i], pascals[1][j]),
                                     mod_mul(pascals[2][k], pascals[3][l])));
        }
      }
    }
  }

#ifdef SHOWDEBUG
  printf("Intersection of all volumes: %u\n", (unsigned int)sum);
#endif

  return sum;
}

int main() {
  unsigned int dims;
  scanf("%u", &dims);

  auto hc1 = read_hypercube(dims);
  auto hc2 = read_hypercube(dims);
  auto hc3 = read_hypercube(dims);

  // Flipping a digit in the same position in all hypercubes does not change the
  // volume. Rearranging digits with the same permutation does not change the
  // volume. This means we can categorize positions into 4 groups.

  int32_t groups[10] = {0, 0, 0, 0};

  for (unsigned int i = 0; i < dims; i++) {
    const unsigned int d12 = (hc1.center[i] != hc2.center[i]) ? 1 : 0;
    const unsigned int d13 = (hc1.center[i] != hc3.center[i]) ? 1 : 0;
    groups[d12 + 2 * d13]++;

    groups[4 + ((hc1.center[i] != hc2.center[i]) ? 1 : 0)]++;
    groups[6 + ((hc1.center[i] != hc3.center[i]) ? 1 : 0)]++;
    groups[8 + ((hc2.center[i] != hc3.center[i]) ? 1 : 0)]++;
  }

  // Compute Pascal triangles
  std::pair<unsigned int, unsigned int> sorted_groups[10];
  for (unsigned int i = 0; i < 10; i++) {
    sorted_groups[i] = std::make_pair(groups[i], i);
  }
  std::sort(sorted_groups, sorted_groups + 10);

  std::vector<uint32_t> tri;
  std::vector<uint32_t> tmp_tri;

  auto inc_tri = [&] {
    tmp_tri.resize(tri.size(), 1);
    for (unsigned int i = 1; i < tri.size(); i++) {
      tmp_tri[i] = mod_add(tri[i - 1], tri[i]);
    }
    tmp_tri.push_back(1);
    std::swap(tri, tmp_tri);
  };

  for (auto p : sorted_groups) {
    while (tri.size() <= p.first) {
      inc_tri();
    }

    pascals[p.second] = tri;
  }

  while (tri.size() <= dims) {
    inc_tri();
  }

  tmp_tri.clear();

  // Check for duplicates
  auto dedup = [&](hypercube_t& a, hypercube_t& b) {
    if (a.center.size() == 0 || b.center.size() == 0) {
      return;
    }

    const auto distance = point_distance(a.center, b.center);
#ifdef SHOWDEBUG
    printf("%d %d %d\n", a.radius, distance, b.radius);
#endif
    // Triangle inequality
    if (a.radius >= b.radius + distance) {
      // `b` is contained inside `a`
      b.center.clear();
    } else if (b.radius >= a.radius + distance) {
      // `a` is contained inside `b`
      a.center.clear();
    }
  };

  dedup(hc2, hc3);
  dedup(hc1, hc3);
  dedup(hc1, hc2);

  uint32_t total = 0;

  // Add volume of individual spheres
  if (!hc1.center.empty()) {
    total = mod_add(total, volume_of_hypersphere(tri, hc1.radius));
  }
  if (!hc2.center.empty()) {
    total = mod_add(total, volume_of_hypersphere(tri, hc2.radius));
  }
  if (!hc3.center.empty()) {
    total = mod_add(total, volume_of_hypersphere(tri, hc3.radius));
  }

  // Subtract intersections of pairs of spheres
  if (!hc1.center.empty() && !hc2.center.empty()) {
    total =
        mod_add(total, mod_neg(volume_of_intersection_of_hypersphere(
                           4, groups[4], groups[5], hc1.radius, hc2.radius)));
  }
  if (!hc1.center.empty() && !hc3.center.empty()) {
    total =
        mod_add(total, mod_neg(volume_of_intersection_of_hypersphere(
                           6, groups[6], groups[7], hc1.radius, hc3.radius)));
  }
  if (!hc2.center.empty() && !hc3.center.empty()) {
    total =
        mod_add(total, mod_neg(volume_of_intersection_of_hypersphere(
                           8, groups[8], groups[9], hc2.radius, hc3.radius)));
  }

  // Add intersection of all three
  if (!hc1.center.empty() && !hc2.center.empty() && !hc3.center.empty()) {
    total = mod_add(total, volume_of_intersection_of_all(
                               groups[0], groups[1], groups[2], groups[3],
                               hc1.radius, hc2.radius, hc3.radius));
  }

  printf("%u\n", (unsigned int)total);
  return 0;
}