1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include <bits/stdc++.h>
using namespace std;
#define PII pair<int, int>
#define PLL pair<LL, LL>
#define VI vector<int>
#define VPII vector<PII>
#define LL long long
#define LD long double
#define f first
#define s second
#define MP make_pair
#define PB push_back
#define endl '\n'
#define ALL(c) (c).begin(), (c).end()
#define SIZ(c) (int)(c).size()
#define REP(i, n) for(int i = 0; i < (int)(n); ++i)
#define FOR(i, b, e) for(int i = (b); i <= (int)(e); ++i)
#define FORD(i, b, e) for(int i = (b); i >= (int)(e); --i)
#define sim template<class n
sim, class s> ostream & operator << (ostream &p, pair<n, s> x)
{return p << "<" << x.f << ", " << x.s << ">";}
sim> auto operator << (ostream &p, n y) ->
typename enable_if<!is_same<n, string>::value, decltype(y.begin(), p)>::type 
{int o = 0; p << "{"; for(auto c: y) {if(o++) p << ", "; p << c;} return p << "}";}
void dor() {cerr << endl;}
sim, class...s> void dor(n p, s...y) {cerr << p << " "; dor(y...);}
sim, class s> void mini(n &p, s y) {if(p>y) p = y;}
sim, class s> void maxi(n &p, s y) {if(p<y) p = y;}
#ifdef DEB
#define debug(...) dor(__FUNCTION__, ":", __LINE__, ": ", __VA_ARGS__)
#else
#define debug(...)
#endif 

#define I(x) #x " =", (x), " "
#define A(a, i) #a "[" #i " =", i, "] =", a[i], " "

// ******************************************************************************

int mod = 1e9+7;
LL mod2 = (LL)mod * mod;
const int MXN = 1e4+5;
int n;
int r[3];
int in[3][MXN];
int t[2][2];
int dwumian[MXN][MXN];
int dp2[MXN];
int dp3[MXN][MXN];

inline LL npok(int a, int b)
  {
  return dwumian[a][b];
  }

void solve_pre(int jed_cel, int jed_beg, int zer_beg, int dp[MXN])
  {
  FOR(jed_na_jed, max(0, jed_cel-zer_beg), min(jed_cel, jed_beg))
    {
    int zer_na_jed = jed_cel - jed_na_jed;
    int jed_na_zera = jed_beg - jed_na_jed; 

    int r = zer_na_jed + jed_na_zera;
    dp[r] = npok(jed_beg, jed_na_jed) * npok(zer_beg, zer_na_jed) % mod;
    }
  }

void solve2_1_pre(int i)
  {
  solve_pre(i, t[1][1], t[1][0], dp2);
  }

inline void add(int &a, int b)
  {
  a += b;
  if(a >= mod)a -= mod;
  }

void solve2_2_pre()
  {
  FOR(i, 0, n)
    {
    solve_pre(i, t[0][0], t[0][1], dp3[i]);
    FOR(j, 1, n)add(dp3[i][j], dp3[i][j-1]);
    if(i)FOR(j, 0, n)add(dp3[i][j], dp3[i-1][j]);
    }
  }

int solve4(int i, int j)
  {
  memset(dp2, 0, sizeof(dp2[0]) * (r[2]+1));
  
  solve2_1_pre(i);
  LL res = 0;
  FOR(dist, 0, r[2])
    {
    res += (LL)dp2[r[2]-dist] * dp3[j][dist];
    if(res >= mod2)res -= mod2;
    }
  return res % mod;
  }

int main()
  {
  scanf("%d", &n);

  dwumian[0][0] = 1;
  FOR(i, 1, n)
    {
    dwumian[i][0] = 1;
    FOR(j, 1, i)
      {
      dwumian[i][j] = (dwumian[i-1][j-1] + dwumian[i-1][j]);
      if(dwumian[i][j] >= mod)dwumian[i][j] -= mod;
      }
    }

  REP(i, 3)
    {
    scanf("%d", &r[i]);
    FOR(j, 1, n)
      {
      char c;
      scanf(" %c", &c);
      in[i][j] = c - '0';
      }
    }
  FOR(i, 1, n)
    t[in[1][i] ^ in[0][i]][in[2][i] ^ in[0][i]]++;

  solve2_2_pre();

  LL res = 0;
  FOR(i, 0, n) // ile jedynek w wynikowym ciągu
    {
    if(i <= r[0]){res += npok(n, i); continue;} // te robione przez 1

    int poc = max(0, i - t[0][0] - t[0][1]);
    int kon = min(i, t[1][0] + t[1][1]);

    FOR(jed_na_jed, poc, kon)
      {
      int zer_na_jed = i-jed_na_jed; // ile zer ciągu drugiego zmieni się na 1

      int jed_na_zera = t[1][0] + t[1][1] - jed_na_jed; 

      if(zer_na_jed + jed_na_zera <= r[1])
        {
        res += npok(t[1][0] + t[1][1], jed_na_jed) * 
               npok(t[0][0] + t[0][1], zer_na_jed); // te robione przez 2 i nie 1

        if(res >= mod2)res -= mod2;
        }
      }
    }
  res %= mod;


  FOR(i, 0, t[1][0] + t[1][1])
    {
    int max_j = min(t[0][0] + t[0][1] - r[0] + i - 1, n - r[1] - i - 1);
    if(max_j >= 0)res += solve4(i, max_j); // te robione przez 3 i nie 1 ani 2
    res %= mod;
    }
  cout << res << endl;
  }