#include <bits/stdc++.h> #include <unistd.h> using namespace std; #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) cerr << "TRACE(" #x ")" << endl; #define DEBUG(x) cerr << #x << " = " << (x) << endl; typedef long long LL; typedef unsigned long long ULL; class Input { public: Input() { bufpos = bufend = buffer; eof = false; } bool Eof() { return eof; } char Peek() { if(bufpos == bufend) Grab(); return *bufpos; } unsigned char UPeek() { return static_cast<unsigned char>(Peek()); } void SkipWS(); template<class T> T Get(); void operator()() {} template<class Arg, class... Args> void operator()(Arg &arg, Args &... args) { arg = Get<Arg>(); operator()(args...); } private: static const int BUFSIZE = 1<<16; char buffer[BUFSIZE]; char *bufpos; char *bufend; bool eof; void Grab(); }; void Input::Grab() { if(eof) return; bufpos = buffer; bufend = buffer + read(0, buffer, BUFSIZE); if(bufend==bufpos) { eof=true; *bufpos=0; } } template<> inline char Input::Get<char>() { char res = Peek(); ++bufpos; return res; } void Input::SkipWS() { while(isspace(UPeek())) Get<char>(); } template<> unsigned Input::Get<unsigned>() { SkipWS(); unsigned x = 0; while(isdigit(UPeek())) { x = 10u * x + (Get<char>()-'0'); } return x; } template<> int Input::Get<int>() { SkipWS(); bool neg = false; if(Peek()=='-') { neg=true; Get<char>(); } unsigned x = Get<unsigned>(); if (neg) x = -x; return static_cast<int>(x); } template<> ULL Input::Get<ULL>() { SkipWS(); ULL x = 0; while(isdigit(UPeek())) { x = 10ULL * x + (Get<char>()-'0'); } return x; } template<> LL Input::Get<LL>() { SkipWS(); bool neg = false; if(Peek()=='-') { neg=true; Get<char>(); } ULL x = Get<ULL>(); if (neg) x = -x; return static_cast<LL>(x); } template<> string Input::Get<string>() { SkipWS(); string s; while(!Eof() && !isspace(UPeek())) s += Get<char>(); return s; } Input IN; template<unsigned MOD> class Modulo { public: static constexpr unsigned modulus = MOD; Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(ULL(v) * ULL(b.v) % MOD); } void operator*=(Modulo b) { *this = *this * b; } bool operator==(Modulo b) const { return v == b.v; } bool operator!=(Modulo b) const { return v != b.v; } private: unsigned v; }; using ModResult = Modulo<1'000'000'007>; using ModHash = Modulo<(1u<<31)-1u>; // Mersenne prime mt19937 rng(1005044525); constexpr int hash_size = 2; // 62-bit hashing class Hash { public: using Repr = array<ModHash, hash_size>; Hash() : val{} {} Hash(const Repr &_val) : val(_val) {} bool operator==(const Hash &other) const { return val[0] == other.val[0] && val[1] == other.val[1]; } bool operator!=(const Hash &other) const { return !operator==(other); } Hash operator+(const Hash &other) const { return Hash(Repr{ val[0] + other.val[0], val[1] + other.val[1]}); } void operator+=(const Hash &other) { *this = *this + other; } Hash operator-(const Hash &other) const { return Hash(Repr{ val[0] - other.val[0], val[1] - other.val[1]}); } void operator-=(const Hash &other) { *this = *this - other; } unsigned small_hash() const { return val[0].get(); } private: Repr val; }; Hash random_hash() { uniform_int_distribution<unsigned> distr(0u, ModHash::modulus - 1u); Hash::Repr val; REP(i, hash_size) val[i] = distr(rng); return Hash(val); } constexpr int MAX_NUM_VERTICES = 25000; constexpr int MAX_NUM_WEIGHTS = MAX_NUM_VERTICES; constexpr int NUM_BUCKETS = 1<<14; template <typename T> class HashTable { public: HashTable() { clear(); } void clear(); T *find(const Hash &hash); T *find_or_insert(const Hash &hash); private: struct Entry { Entry *next; Hash hash; T value; }; Entry *buckets[NUM_BUCKETS]; Entry entries[MAX_NUM_VERTICES]; int num_entries; }; template <typename T> void HashTable<T>::clear() { REP(i,NUM_BUCKETS) buckets[i] = nullptr; num_entries = 0; } template <typename T> T *HashTable<T>::find(const Hash &hash) { Entry *p = buckets[hash.small_hash() & (NUM_BUCKETS-1)]; while (p) { if (p->hash == hash) return &p->value; p = p->next; } return nullptr; } template <typename T> T *HashTable<T>::find_or_insert(const Hash &hash) { Entry *&first = buckets[hash.small_hash() & (NUM_BUCKETS-1)]; Entry *p = first; while (p) { if (p->hash == hash) return &p->value; p = p->next; } p = &entries[num_entries++]; p->hash = hash; p->value = T{}; p->next = first; first = p; return &p->value; } struct Edge { int dest; int weight; // 0..num_vertices-1 }; struct EdgeForWeight { int a,b; }; int num_vertices; int num_weights; int wanted_index; vector<Edge> edges[MAX_NUM_VERTICES]; vector<EdgeForWeight> edges_for_weight[MAX_NUM_WEIGHTS]; void read_input() { IN(num_vertices, wanted_index); num_weights = num_vertices; --wanted_index; REP(i, num_vertices-1) { int a,b,w; IN(a,b,w); --a; --b; --w; edges[a].push_back(Edge{b,w}); edges[b].push_back(Edge{a,w}); edges_for_weight[w].push_back(EdgeForWeight{a,b}); } } Hash weight_hashes[MAX_NUM_WEIGHTS]; struct BfsEntry { int vertex; int parent; int num_special; int last_special_vertex; Hash big_weight_hash; }; // to avoid reallocating namespace solve_one_weight_vars { int connection_count[MAX_NUM_VERTICES]; BfsEntry *last_bfs_entry[2]; BfsEntry bfs_entries[2][MAX_NUM_VERTICES]; HashTable<int> hash_tables[2]; } // Return the count for the given weight and modify index. int solve_one_weight(int special_weight, const Hash &desired_big_weight_hash, int &index) { using namespace solve_one_weight_vars; const int num_special_edges = edges_for_weight[special_weight].size(); FOR(count,1,num_special_edges) connection_count[count] = 0; for (EdgeForWeight starting_edge : edges_for_weight[special_weight]) { REP(direction, 2) { hash_tables[direction].clear(); { BfsEntry &start_entry = bfs_entries[direction][0]; start_entry.vertex = starting_edge.b; start_entry.parent = starting_edge.a; start_entry.num_special = 0; start_entry.last_special_vertex = starting_edge.b; start_entry.big_weight_hash = Hash{}; } BfsEntry *next_entry = &bfs_entries[direction][1]; for (BfsEntry *entry = &bfs_entries[direction][0]; entry != next_entry; ++entry) { if (entry->num_special == 0) { int *cnt = hash_tables[direction].find_or_insert(desired_big_weight_hash - entry->big_weight_hash); ++*cnt; } for (const Edge &e : edges[entry->vertex]) { if (e.dest == entry->parent) continue; next_entry->vertex = e.dest; next_entry->parent = entry->vertex; next_entry->num_special = entry->num_special; next_entry->last_special_vertex = entry->last_special_vertex; next_entry->big_weight_hash = entry->big_weight_hash; if (e.weight == special_weight) { ++next_entry->num_special; next_entry->last_special_vertex = e.dest; } else if (e.weight > special_weight) { next_entry->big_weight_hash += weight_hashes[e.weight]; } ++next_entry; } } last_bfs_entry[direction] = next_entry; swap(starting_edge.a, starting_edge.b); } REP(direction, 2) { for (BfsEntry *entry = bfs_entries[direction]; entry != last_bfs_entry[direction]; ++entry) { if (entry->last_special_vertex > starting_edge.a) { int *cnt = hash_tables[direction^1].find(entry->big_weight_hash); if (cnt) { connection_count[entry->num_special+1] += *cnt; } } } swap(starting_edge.a, starting_edge.b); } } // connection_count[0] is not computed, but not required int special_count = num_special_edges; while (special_count > 0) { int cc = connection_count[special_count]; if (index < cc) break; index -= cc; --special_count; } return special_count; } int weight_counts[MAX_NUM_WEIGHTS]; void solve() { int total_connections = num_vertices * (num_vertices-1) / 2; // Easier to count from largest rather than smallest. int index = total_connections - 1 - wanted_index; Hash desired_big_weight_hash; FORD(special_weight, num_weights-1, 0) { int special_count = solve_one_weight(special_weight, desired_big_weight_hash, index); weight_counts[special_weight] = special_count; weight_hashes[special_weight] = random_hash(); REP(i, special_count) desired_big_weight_hash += weight_hashes[special_weight]; } } ModResult calc_total_tax() { ModResult exponential_tax = 1; ModResult total_tax = 0; REP(weight, num_weights) { exponential_tax *= num_vertices; total_tax += exponential_tax * weight_counts[weight]; } return total_tax; } int main() { read_input(); solve(); ModResult total_tax = calc_total_tax(); cout << total_tax.get() << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | #include <bits/stdc++.h> #include <unistd.h> using namespace std; #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) cerr << "TRACE(" #x ")" << endl; #define DEBUG(x) cerr << #x << " = " << (x) << endl; typedef long long LL; typedef unsigned long long ULL; class Input { public: Input() { bufpos = bufend = buffer; eof = false; } bool Eof() { return eof; } char Peek() { if(bufpos == bufend) Grab(); return *bufpos; } unsigned char UPeek() { return static_cast<unsigned char>(Peek()); } void SkipWS(); template<class T> T Get(); void operator()() {} template<class Arg, class... Args> void operator()(Arg &arg, Args &... args) { arg = Get<Arg>(); operator()(args...); } private: static const int BUFSIZE = 1<<16; char buffer[BUFSIZE]; char *bufpos; char *bufend; bool eof; void Grab(); }; void Input::Grab() { if(eof) return; bufpos = buffer; bufend = buffer + read(0, buffer, BUFSIZE); if(bufend==bufpos) { eof=true; *bufpos=0; } } template<> inline char Input::Get<char>() { char res = Peek(); ++bufpos; return res; } void Input::SkipWS() { while(isspace(UPeek())) Get<char>(); } template<> unsigned Input::Get<unsigned>() { SkipWS(); unsigned x = 0; while(isdigit(UPeek())) { x = 10u * x + (Get<char>()-'0'); } return x; } template<> int Input::Get<int>() { SkipWS(); bool neg = false; if(Peek()=='-') { neg=true; Get<char>(); } unsigned x = Get<unsigned>(); if (neg) x = -x; return static_cast<int>(x); } template<> ULL Input::Get<ULL>() { SkipWS(); ULL x = 0; while(isdigit(UPeek())) { x = 10ULL * x + (Get<char>()-'0'); } return x; } template<> LL Input::Get<LL>() { SkipWS(); bool neg = false; if(Peek()=='-') { neg=true; Get<char>(); } ULL x = Get<ULL>(); if (neg) x = -x; return static_cast<LL>(x); } template<> string Input::Get<string>() { SkipWS(); string s; while(!Eof() && !isspace(UPeek())) s += Get<char>(); return s; } Input IN; template<unsigned MOD> class Modulo { public: static constexpr unsigned modulus = MOD; Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(ULL(v) * ULL(b.v) % MOD); } void operator*=(Modulo b) { *this = *this * b; } bool operator==(Modulo b) const { return v == b.v; } bool operator!=(Modulo b) const { return v != b.v; } private: unsigned v; }; using ModResult = Modulo<1'000'000'007>; using ModHash = Modulo<(1u<<31)-1u>; // Mersenne prime mt19937 rng(1005044525); constexpr int hash_size = 2; // 62-bit hashing class Hash { public: using Repr = array<ModHash, hash_size>; Hash() : val{} {} Hash(const Repr &_val) : val(_val) {} bool operator==(const Hash &other) const { return val[0] == other.val[0] && val[1] == other.val[1]; } bool operator!=(const Hash &other) const { return !operator==(other); } Hash operator+(const Hash &other) const { return Hash(Repr{ val[0] + other.val[0], val[1] + other.val[1]}); } void operator+=(const Hash &other) { *this = *this + other; } Hash operator-(const Hash &other) const { return Hash(Repr{ val[0] - other.val[0], val[1] - other.val[1]}); } void operator-=(const Hash &other) { *this = *this - other; } unsigned small_hash() const { return val[0].get(); } private: Repr val; }; Hash random_hash() { uniform_int_distribution<unsigned> distr(0u, ModHash::modulus - 1u); Hash::Repr val; REP(i, hash_size) val[i] = distr(rng); return Hash(val); } constexpr int MAX_NUM_VERTICES = 25000; constexpr int MAX_NUM_WEIGHTS = MAX_NUM_VERTICES; constexpr int NUM_BUCKETS = 1<<14; template <typename T> class HashTable { public: HashTable() { clear(); } void clear(); T *find(const Hash &hash); T *find_or_insert(const Hash &hash); private: struct Entry { Entry *next; Hash hash; T value; }; Entry *buckets[NUM_BUCKETS]; Entry entries[MAX_NUM_VERTICES]; int num_entries; }; template <typename T> void HashTable<T>::clear() { REP(i,NUM_BUCKETS) buckets[i] = nullptr; num_entries = 0; } template <typename T> T *HashTable<T>::find(const Hash &hash) { Entry *p = buckets[hash.small_hash() & (NUM_BUCKETS-1)]; while (p) { if (p->hash == hash) return &p->value; p = p->next; } return nullptr; } template <typename T> T *HashTable<T>::find_or_insert(const Hash &hash) { Entry *&first = buckets[hash.small_hash() & (NUM_BUCKETS-1)]; Entry *p = first; while (p) { if (p->hash == hash) return &p->value; p = p->next; } p = &entries[num_entries++]; p->hash = hash; p->value = T{}; p->next = first; first = p; return &p->value; } struct Edge { int dest; int weight; // 0..num_vertices-1 }; struct EdgeForWeight { int a,b; }; int num_vertices; int num_weights; int wanted_index; vector<Edge> edges[MAX_NUM_VERTICES]; vector<EdgeForWeight> edges_for_weight[MAX_NUM_WEIGHTS]; void read_input() { IN(num_vertices, wanted_index); num_weights = num_vertices; --wanted_index; REP(i, num_vertices-1) { int a,b,w; IN(a,b,w); --a; --b; --w; edges[a].push_back(Edge{b,w}); edges[b].push_back(Edge{a,w}); edges_for_weight[w].push_back(EdgeForWeight{a,b}); } } Hash weight_hashes[MAX_NUM_WEIGHTS]; struct BfsEntry { int vertex; int parent; int num_special; int last_special_vertex; Hash big_weight_hash; }; // to avoid reallocating namespace solve_one_weight_vars { int connection_count[MAX_NUM_VERTICES]; BfsEntry *last_bfs_entry[2]; BfsEntry bfs_entries[2][MAX_NUM_VERTICES]; HashTable<int> hash_tables[2]; } // Return the count for the given weight and modify index. int solve_one_weight(int special_weight, const Hash &desired_big_weight_hash, int &index) { using namespace solve_one_weight_vars; const int num_special_edges = edges_for_weight[special_weight].size(); FOR(count,1,num_special_edges) connection_count[count] = 0; for (EdgeForWeight starting_edge : edges_for_weight[special_weight]) { REP(direction, 2) { hash_tables[direction].clear(); { BfsEntry &start_entry = bfs_entries[direction][0]; start_entry.vertex = starting_edge.b; start_entry.parent = starting_edge.a; start_entry.num_special = 0; start_entry.last_special_vertex = starting_edge.b; start_entry.big_weight_hash = Hash{}; } BfsEntry *next_entry = &bfs_entries[direction][1]; for (BfsEntry *entry = &bfs_entries[direction][0]; entry != next_entry; ++entry) { if (entry->num_special == 0) { int *cnt = hash_tables[direction].find_or_insert(desired_big_weight_hash - entry->big_weight_hash); ++*cnt; } for (const Edge &e : edges[entry->vertex]) { if (e.dest == entry->parent) continue; next_entry->vertex = e.dest; next_entry->parent = entry->vertex; next_entry->num_special = entry->num_special; next_entry->last_special_vertex = entry->last_special_vertex; next_entry->big_weight_hash = entry->big_weight_hash; if (e.weight == special_weight) { ++next_entry->num_special; next_entry->last_special_vertex = e.dest; } else if (e.weight > special_weight) { next_entry->big_weight_hash += weight_hashes[e.weight]; } ++next_entry; } } last_bfs_entry[direction] = next_entry; swap(starting_edge.a, starting_edge.b); } REP(direction, 2) { for (BfsEntry *entry = bfs_entries[direction]; entry != last_bfs_entry[direction]; ++entry) { if (entry->last_special_vertex > starting_edge.a) { int *cnt = hash_tables[direction^1].find(entry->big_weight_hash); if (cnt) { connection_count[entry->num_special+1] += *cnt; } } } swap(starting_edge.a, starting_edge.b); } } // connection_count[0] is not computed, but not required int special_count = num_special_edges; while (special_count > 0) { int cc = connection_count[special_count]; if (index < cc) break; index -= cc; --special_count; } return special_count; } int weight_counts[MAX_NUM_WEIGHTS]; void solve() { int total_connections = num_vertices * (num_vertices-1) / 2; // Easier to count from largest rather than smallest. int index = total_connections - 1 - wanted_index; Hash desired_big_weight_hash; FORD(special_weight, num_weights-1, 0) { int special_count = solve_one_weight(special_weight, desired_big_weight_hash, index); weight_counts[special_weight] = special_count; weight_hashes[special_weight] = random_hash(); REP(i, special_count) desired_big_weight_hash += weight_hashes[special_weight]; } } ModResult calc_total_tax() { ModResult exponential_tax = 1; ModResult total_tax = 0; REP(weight, num_weights) { exponential_tax *= num_vertices; total_tax += exponential_tax * weight_counts[weight]; } return total_tax; } int main() { read_input(); solve(); ModResult total_tax = calc_total_tax(); cout << total_tax.get() << "\n"; } |