#include <cstdio> #include <limits> #include <vector> #include <cstring> #include <cassert> #define MODULO 1000000007 class Modular { unsigned v; public: Modular(void) { } Modular(unsigned v) : v(v) {} Modular(const Modular &other) : v(other.v) {} unsigned value() const { return v; } Modular operator+(const Modular &m) const { return Modular((v + m.v) % MODULO); } Modular operator-(const Modular &m) const { return Modular((MODULO + v - m.v) % MODULO); } Modular &operator+=(const Modular &m) { (v += m.v) %= MODULO; return *this; } Modular &operator-=(const Modular &m) { ((v += MODULO) -= m.v) %= MODULO; return *this; } Modular operator*(const Modular &m) const { return Modular((static_cast<unsigned long long>(v) * static_cast<unsigned long long>(m.v)) % static_cast<unsigned long long>(MODULO)); } }; class Matrix { Modular data[10001 * 10002 / 2]; public: Modular* operator[](size_t n) { size_t index = n * (n + 1) / 2; return data + index; } }; //typedef Modular Matrix[10001][10001]; Matrix newton, balls; void fill_newton(int N) { newton[0][0] = 1; for (int n = 1; n <= N; ++n) { newton[n][0] = 1; newton[n][n] = 1; for (int k = 1; k < n; ++k) { newton[n][k] = newton[n - 1][k - 1] + newton[n - 1][k]; } } } void fill_balls(int N) { for (int n = 0; n <= N; ++n) { Modular value = 0; for (int r = 0; r <= n; ++r) { value += newton[n][r]; balls[n][r] = value; } } } // N - wymiar, r - promienie, d - ilość różniących się bitów Modular volume2(int N, int r1, int r2, int d) { Modular result = 0; const Modular *ball = balls[N - d]; const int a_min = std::max(0, d - r2); const int a_max = std::min(r1, d); for (int a = a_min; a <= a_max; ++a) { const int R1 = r1 - a; const int R2 = r2 - (d - a); result += newton[d][a] * ball[std::min(N-d, std::min(R1, R2))]; } return result; } Modular volume2(int N, const char *s1, int r1, const char *s2, int r2) { int d = 0; for (int i = 0; i < N; ++i) { d += (s1[i] != s2[i]); } return volume2(N, r1, r2, d); } Modular temp[10001][10001]; // N - wymiar, r - promienie, d1 - 100|011, d2 - 010|101, d3 - 001|110 Modular volume3(int N, int r1, int r2, int r3, int d1, int d2, int d3) { Modular result = 0; int iball = N - (d1 + d2 + d3); const Modular *ball = balls[iball]; int Qmin = std::min(r1, std::min(r2, r3)) - (d1 + d2 + d3); for (int Q = 0; Q <= N; ++Q) { Modular x = 0; for (int a3 = 0; a3 <= N; ++a3) { if (a3 <= d3 && Qmin + Q + a3 >= 0) { x += newton[d3][a3] * ball[std::min(Qmin + Q + a3, iball)]; } temp[Q][a3] = x; } } const int a1_min = std::max(0, std::max(d1 - r2, d1 - r3)); const int a1_max = std::min(r1, d1); for (int a1 = a1_min; a1 <= a1_max; ++a1) { const int a23 = d1 - a1; const int R1 = r1 - a1; const int R2 = r2 - a23; const int R3 = r3 - a23; const int a2_min = std::max(0, std::max(d2 - R1, d2 - R3)); const int a2_max = std::min(R2, d2); for (int a2 = a2_min; a2 <= a2_max; ++a2) { const int a13 = d2 - a2; const int RR1 = R1 - a13; const int RR2 = R2 - a2; const int RR3 = R3 - a13; const int a3_min = std::max(0, std::max(d3 - RR1, d3 - RR2)); const int a3_max = std::min(RR3, d3); const Modular n12 = newton[d1][a1] * newton[d2][a2]; const int RR12 = std::min(RR1, RR2) - d3; Modular z = 0; int a3_border = (RR3 < RR12) ? -1 : (RR3 - RR12) / 2; if (a3_border < a3_min) { z += temp[RR3 - d3 - Qmin][d3 - a3_min]; if (a3_max < d3) { z -= temp[RR3 - d3 - Qmin][d3 - a3_max - 1]; } } else if (a3_border >= a3_max) { z += temp[RR12 - Qmin][a3_max]; if (a3_min > 0) { z -= temp[RR12 - Qmin][a3_min - 1]; } } else { z += temp[RR12 - Qmin][a3_border]; if (a3_min > 0) { z -= temp[RR12 - Qmin][a3_min - 1]; } z += temp[RR3 - d3 - Qmin][d3 - (a3_border + 1)]; if (a3_max < d3) { z -= temp[RR3 - d3 - Qmin][d3 - a3_max - 1]; } } result += n12 * z; } } return result; } Modular volume3(int N, const char *s1, int r1, const char *s2, int r2, const char *s3, int r3) { int d1 = 0, d2 = 0, d3 = 0; for (int i = 0; i < N; ++i) { if (s1[i] != s2[i] || s2[i] != s3[i]) { d1 += (s2[i] == s3[i]); d2 += (s1[i] == s3[i]); d3 += (s1[i] == s2[i]); } } return volume3(N, r1, r2, r3, d1, d2, d3); } char s1[10003], s2[10003], s3[10003]; int main() { int N; scanf("%d", &N); fill_newton(N); fill_balls(N); int r1, r2, r3; scanf("%d %s", &r1, s1); scanf("%d %s", &r2, s2); scanf("%d %s", &r3, s3); Modular v1 = balls[N][r1], v2 = balls[N][r2], v3 = balls[N][r3]; Modular v12 = volume2(N, s1, r1, s2, r2); Modular v13 = volume2(N, s1, r1, s3, r3); Modular v23 = volume2(N, s2, r2, s3, r3); Modular v123 = volume3(N, s1, r1, s2, r2, s3, r3); Modular result = (v1 + v2 + v3 + v123) - (v12 + v13 + v23); printf("%u\n", result.value()); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | #include <cstdio> #include <limits> #include <vector> #include <cstring> #include <cassert> #define MODULO 1000000007 class Modular { unsigned v; public: Modular(void) { } Modular(unsigned v) : v(v) {} Modular(const Modular &other) : v(other.v) {} unsigned value() const { return v; } Modular operator+(const Modular &m) const { return Modular((v + m.v) % MODULO); } Modular operator-(const Modular &m) const { return Modular((MODULO + v - m.v) % MODULO); } Modular &operator+=(const Modular &m) { (v += m.v) %= MODULO; return *this; } Modular &operator-=(const Modular &m) { ((v += MODULO) -= m.v) %= MODULO; return *this; } Modular operator*(const Modular &m) const { return Modular((static_cast<unsigned long long>(v) * static_cast<unsigned long long>(m.v)) % static_cast<unsigned long long>(MODULO)); } }; class Matrix { Modular data[10001 * 10002 / 2]; public: Modular* operator[](size_t n) { size_t index = n * (n + 1) / 2; return data + index; } }; //typedef Modular Matrix[10001][10001]; Matrix newton, balls; void fill_newton(int N) { newton[0][0] = 1; for (int n = 1; n <= N; ++n) { newton[n][0] = 1; newton[n][n] = 1; for (int k = 1; k < n; ++k) { newton[n][k] = newton[n - 1][k - 1] + newton[n - 1][k]; } } } void fill_balls(int N) { for (int n = 0; n <= N; ++n) { Modular value = 0; for (int r = 0; r <= n; ++r) { value += newton[n][r]; balls[n][r] = value; } } } // N - wymiar, r - promienie, d - ilość różniących się bitów Modular volume2(int N, int r1, int r2, int d) { Modular result = 0; const Modular *ball = balls[N - d]; const int a_min = std::max(0, d - r2); const int a_max = std::min(r1, d); for (int a = a_min; a <= a_max; ++a) { const int R1 = r1 - a; const int R2 = r2 - (d - a); result += newton[d][a] * ball[std::min(N-d, std::min(R1, R2))]; } return result; } Modular volume2(int N, const char *s1, int r1, const char *s2, int r2) { int d = 0; for (int i = 0; i < N; ++i) { d += (s1[i] != s2[i]); } return volume2(N, r1, r2, d); } Modular temp[10001][10001]; // N - wymiar, r - promienie, d1 - 100|011, d2 - 010|101, d3 - 001|110 Modular volume3(int N, int r1, int r2, int r3, int d1, int d2, int d3) { Modular result = 0; int iball = N - (d1 + d2 + d3); const Modular *ball = balls[iball]; int Qmin = std::min(r1, std::min(r2, r3)) - (d1 + d2 + d3); for (int Q = 0; Q <= N; ++Q) { Modular x = 0; for (int a3 = 0; a3 <= N; ++a3) { if (a3 <= d3 && Qmin + Q + a3 >= 0) { x += newton[d3][a3] * ball[std::min(Qmin + Q + a3, iball)]; } temp[Q][a3] = x; } } const int a1_min = std::max(0, std::max(d1 - r2, d1 - r3)); const int a1_max = std::min(r1, d1); for (int a1 = a1_min; a1 <= a1_max; ++a1) { const int a23 = d1 - a1; const int R1 = r1 - a1; const int R2 = r2 - a23; const int R3 = r3 - a23; const int a2_min = std::max(0, std::max(d2 - R1, d2 - R3)); const int a2_max = std::min(R2, d2); for (int a2 = a2_min; a2 <= a2_max; ++a2) { const int a13 = d2 - a2; const int RR1 = R1 - a13; const int RR2 = R2 - a2; const int RR3 = R3 - a13; const int a3_min = std::max(0, std::max(d3 - RR1, d3 - RR2)); const int a3_max = std::min(RR3, d3); const Modular n12 = newton[d1][a1] * newton[d2][a2]; const int RR12 = std::min(RR1, RR2) - d3; Modular z = 0; int a3_border = (RR3 < RR12) ? -1 : (RR3 - RR12) / 2; if (a3_border < a3_min) { z += temp[RR3 - d3 - Qmin][d3 - a3_min]; if (a3_max < d3) { z -= temp[RR3 - d3 - Qmin][d3 - a3_max - 1]; } } else if (a3_border >= a3_max) { z += temp[RR12 - Qmin][a3_max]; if (a3_min > 0) { z -= temp[RR12 - Qmin][a3_min - 1]; } } else { z += temp[RR12 - Qmin][a3_border]; if (a3_min > 0) { z -= temp[RR12 - Qmin][a3_min - 1]; } z += temp[RR3 - d3 - Qmin][d3 - (a3_border + 1)]; if (a3_max < d3) { z -= temp[RR3 - d3 - Qmin][d3 - a3_max - 1]; } } result += n12 * z; } } return result; } Modular volume3(int N, const char *s1, int r1, const char *s2, int r2, const char *s3, int r3) { int d1 = 0, d2 = 0, d3 = 0; for (int i = 0; i < N; ++i) { if (s1[i] != s2[i] || s2[i] != s3[i]) { d1 += (s2[i] == s3[i]); d2 += (s1[i] == s3[i]); d3 += (s1[i] == s2[i]); } } return volume3(N, r1, r2, r3, d1, d2, d3); } char s1[10003], s2[10003], s3[10003]; int main() { int N; scanf("%d", &N); fill_newton(N); fill_balls(N); int r1, r2, r3; scanf("%d %s", &r1, s1); scanf("%d %s", &r2, s2); scanf("%d %s", &r3, s3); Modular v1 = balls[N][r1], v2 = balls[N][r2], v3 = balls[N][r3]; Modular v12 = volume2(N, s1, r1, s2, r2); Modular v13 = volume2(N, s1, r1, s3, r3); Modular v23 = volume2(N, s2, r2, s3, r3); Modular v123 = volume3(N, s1, r1, s2, r2, s3, r3); Modular result = (v1 + v2 + v3 + v123) - (v12 + v13 + v23); printf("%u\n", result.value()); } |