#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long maxFact = 10010; long long factorials[maxFact+1]; long long invFactorials[maxFact+1]; long long moduloExp(long long base, long long exp) { if(exp == 0) return 1; long long pow = moduloExp(base*base % mod, exp>>1); if(exp & 1) pow = pow*base % mod; return pow; } long long moduloInverse(long long x) { return moduloExp(x, mod-2); } long long choose(int objects, int amount) { if(amount > objects || objects < 0 || amount < 0) return 0; return factorials[objects] * invFactorials[amount] % mod * invFactorials[objects-amount] % mod; } struct hmsphere { vector<bool> p; int r; hmsphere(vector<bool> pos, int radius) { p = pos; r = radius; } hmsphere(string pos, int radius) { for(int i = 0; i < pos.size(); i++) { p.push_back(pos[i] != '0'); } r = radius; } hmsphere invert() { vector<bool> inverted; for(int i = 0; i < p.size(); i++) { inverted.push_back(!p[i]); } return hmsphere(inverted, p.size()-r-1); } bool operator > (hmsphere& o) { return r > o.r; } bool operator < (hmsphere& o) { return r < o.r; } }; long long i1(int d, hmsphere& s1) { long long w = 0; for(int i = 0; i <= s1.r; i++) { w = (w+choose(d, i)) % mod; } return w; } long long i2(int d, hmsphere& s1, hmsphere& s2) { int w = 0; for(int i = 0; i < s1.p.size(); i++) { if(s1.p[i] == s2.p[i]) w++; } int a = d-w; long long pref[a+2]; pref[0] = 0; for(int i = 0; i <= a; i++) { pref[i+1] = (pref[i] + choose(a, i)) % mod; } long long ret = 0; int maxi = min(s1.r, s2.r), maxx, minx; for(int i = 0; i <= maxi; i++) { maxx = min(s2.r-i, a); minx = max(0, a+i-s1.r); if(maxx >= minx) { ret = (ret + choose(w, i) * ((pref[maxx+1] - pref[minx] + mod) % mod) % mod) % mod; } } return ret; } long long i3(int d, hmsphere& s1, hmsphere& s2, hmsphere& s3) { int w = 0, a = 0, b = 0, c = 0; for(int i = 0; i < s1.p.size(); i++) { if(s1.p[i] == s2.p[i] && s1.p[i] == s3.p[i]) w++; if(!s1.p[i] == s2.p[i] && !s1.p[i] == s3.p[i]) a++; if(!s2.p[i] == s1.p[i] && !s2.p[i] == s3.p[i]) b++; if(!s3.p[i] == s1.p[i] && !s3.p[i] == s2.p[i]) c++; } long long ret = 0, sumx, sumy; int maxi = min(min(s1.r, min(s2.r, s3.r)), w), maxx, maxy, maxz, minz; long long pref[c+2]; pref[0] = 0; for(int i = 0; i <= c; i++) { pref[i+1] = (pref[i] + choose(c, i)) % mod; } for(int i = 0; i <= maxi; i++) { maxx = min(min(s3.r-i, s2.r-i), a); sumx = 0; for(int x = max(0, a+i-s1.r); x <= maxx; x++) { maxy = min(min(s3.r-i-x, s1.r-i-a+x), b); sumy = 0; for(int y = max(0, x-s2.r+i+b); y <= maxy; y++) { maxz = min(min(s1.r-i-a-y+x, s2.r-i-b-x+y), c); minz = max(0, x+y-s3.r+i+c); if(maxz >= minz) { sumy = (sumy + (pref[maxz+1] - pref[minz] + mod) % mod * choose(b, y) % mod) % mod; } } sumx = (sumx + sumy * choose(a, x) % mod) % mod; } ret = (ret + sumx * choose(w, i) % mod) % mod; } return ret; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); factorials[0] = 1; for(int i = 1; i <= maxFact; i++) factorials[i] = factorials[i-1]*i % mod; invFactorials[maxFact] = moduloInverse(factorials[maxFact]); for(int i = maxFact-1; i >= 0; i--) invFactorials[i] = invFactorials[i+1]*(i+1) % mod; int n, r1, r2, r3; cin >> n; string s1, s2, s3; cin >> r1 >> s1 >> r2 >> s2 >> r3 >> s3; hmsphere s[3] = {hmsphere(s1, r1), hmsphere(s2, r2), hmsphere(s3, r3)}; sort(s, s+3); long long res = 0; if(s[2].r*2 >= n) { s[2] = s[2].invert(); if(s[1].r*2 >= n) { s[1] = s[1].invert(); if(s[0].r*2 >= n) { s[0] = s[0].invert(); res = (res + moduloExp(2, n)) % mod; res = (res - i3(n, s[0], s[1], s[2]) + mod) % mod; } else { res = (res + moduloExp(2, n)) % mod; res = (res - i2(n, s[1], s[2]) + mod) % mod; res = (res + i3(n, s[0], s[1], s[2])) % mod; } } else { res = (res + moduloExp(2, n)) % mod; res = (res - i1(n, s[2]) + mod) % mod; res = (res + i2(n, s[0], s[2])) % mod; res = (res + i2(n, s[1], s[2])) % mod; res = (res - i3(n, s[0], s[1], s[2]) + mod) % mod; } } else { res = (res + i1(n, s[0])) % mod; res = (res + i1(n, s[1])) % mod; res = (res + i1(n, s[2])) % mod; res = (res - i2(n, s[0], s[1]) + mod) % mod; res = (res - i2(n, s[0], s[2]) + mod) % mod; res = (res - i2(n, s[1], s[2]) + mod) % mod; res = (res + i3(n, s[0], s[1], s[2])) % mod; } cout << res; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | #include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long maxFact = 10010; long long factorials[maxFact+1]; long long invFactorials[maxFact+1]; long long moduloExp(long long base, long long exp) { if(exp == 0) return 1; long long pow = moduloExp(base*base % mod, exp>>1); if(exp & 1) pow = pow*base % mod; return pow; } long long moduloInverse(long long x) { return moduloExp(x, mod-2); } long long choose(int objects, int amount) { if(amount > objects || objects < 0 || amount < 0) return 0; return factorials[objects] * invFactorials[amount] % mod * invFactorials[objects-amount] % mod; } struct hmsphere { vector<bool> p; int r; hmsphere(vector<bool> pos, int radius) { p = pos; r = radius; } hmsphere(string pos, int radius) { for(int i = 0; i < pos.size(); i++) { p.push_back(pos[i] != '0'); } r = radius; } hmsphere invert() { vector<bool> inverted; for(int i = 0; i < p.size(); i++) { inverted.push_back(!p[i]); } return hmsphere(inverted, p.size()-r-1); } bool operator > (hmsphere& o) { return r > o.r; } bool operator < (hmsphere& o) { return r < o.r; } }; long long i1(int d, hmsphere& s1) { long long w = 0; for(int i = 0; i <= s1.r; i++) { w = (w+choose(d, i)) % mod; } return w; } long long i2(int d, hmsphere& s1, hmsphere& s2) { int w = 0; for(int i = 0; i < s1.p.size(); i++) { if(s1.p[i] == s2.p[i]) w++; } int a = d-w; long long pref[a+2]; pref[0] = 0; for(int i = 0; i <= a; i++) { pref[i+1] = (pref[i] + choose(a, i)) % mod; } long long ret = 0; int maxi = min(s1.r, s2.r), maxx, minx; for(int i = 0; i <= maxi; i++) { maxx = min(s2.r-i, a); minx = max(0, a+i-s1.r); if(maxx >= minx) { ret = (ret + choose(w, i) * ((pref[maxx+1] - pref[minx] + mod) % mod) % mod) % mod; } } return ret; } long long i3(int d, hmsphere& s1, hmsphere& s2, hmsphere& s3) { int w = 0, a = 0, b = 0, c = 0; for(int i = 0; i < s1.p.size(); i++) { if(s1.p[i] == s2.p[i] && s1.p[i] == s3.p[i]) w++; if(!s1.p[i] == s2.p[i] && !s1.p[i] == s3.p[i]) a++; if(!s2.p[i] == s1.p[i] && !s2.p[i] == s3.p[i]) b++; if(!s3.p[i] == s1.p[i] && !s3.p[i] == s2.p[i]) c++; } long long ret = 0, sumx, sumy; int maxi = min(min(s1.r, min(s2.r, s3.r)), w), maxx, maxy, maxz, minz; long long pref[c+2]; pref[0] = 0; for(int i = 0; i <= c; i++) { pref[i+1] = (pref[i] + choose(c, i)) % mod; } for(int i = 0; i <= maxi; i++) { maxx = min(min(s3.r-i, s2.r-i), a); sumx = 0; for(int x = max(0, a+i-s1.r); x <= maxx; x++) { maxy = min(min(s3.r-i-x, s1.r-i-a+x), b); sumy = 0; for(int y = max(0, x-s2.r+i+b); y <= maxy; y++) { maxz = min(min(s1.r-i-a-y+x, s2.r-i-b-x+y), c); minz = max(0, x+y-s3.r+i+c); if(maxz >= minz) { sumy = (sumy + (pref[maxz+1] - pref[minz] + mod) % mod * choose(b, y) % mod) % mod; } } sumx = (sumx + sumy * choose(a, x) % mod) % mod; } ret = (ret + sumx * choose(w, i) % mod) % mod; } return ret; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); factorials[0] = 1; for(int i = 1; i <= maxFact; i++) factorials[i] = factorials[i-1]*i % mod; invFactorials[maxFact] = moduloInverse(factorials[maxFact]); for(int i = maxFact-1; i >= 0; i--) invFactorials[i] = invFactorials[i+1]*(i+1) % mod; int n, r1, r2, r3; cin >> n; string s1, s2, s3; cin >> r1 >> s1 >> r2 >> s2 >> r3 >> s3; hmsphere s[3] = {hmsphere(s1, r1), hmsphere(s2, r2), hmsphere(s3, r3)}; sort(s, s+3); long long res = 0; if(s[2].r*2 >= n) { s[2] = s[2].invert(); if(s[1].r*2 >= n) { s[1] = s[1].invert(); if(s[0].r*2 >= n) { s[0] = s[0].invert(); res = (res + moduloExp(2, n)) % mod; res = (res - i3(n, s[0], s[1], s[2]) + mod) % mod; } else { res = (res + moduloExp(2, n)) % mod; res = (res - i2(n, s[1], s[2]) + mod) % mod; res = (res + i3(n, s[0], s[1], s[2])) % mod; } } else { res = (res + moduloExp(2, n)) % mod; res = (res - i1(n, s[2]) + mod) % mod; res = (res + i2(n, s[0], s[2])) % mod; res = (res + i2(n, s[1], s[2])) % mod; res = (res - i3(n, s[0], s[1], s[2]) + mod) % mod; } } else { res = (res + i1(n, s[0])) % mod; res = (res + i1(n, s[1])) % mod; res = (res + i1(n, s[2])) % mod; res = (res - i2(n, s[0], s[1]) + mod) % mod; res = (res - i2(n, s[0], s[2]) + mod) % mod; res = (res - i2(n, s[1], s[2]) + mod) % mod; res = (res + i3(n, s[0], s[1], s[2])) % mod; } cout << res; return 0; } |