1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
* author: pavveu
*/

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using vi = vector<int>;
using vll = vector<ll>;
using pii = pair<int,int>;
using graph = vector<vi>;

#define FOR(name__, upper__) for (int name__ = 0; name__ < (upper__); ++name__)
#define all(x) begin(x), end(x)
#define mp make_pair
#define mt make_tuple

template<class T>
void initialize_matrix(vector<vector<T>>& matrix, int rows, int cols, T value) {
	assert(matrix.empty());
	FOR (row, rows) 
		matrix.emplace_back(cols, value);
}

const int M = 2520;
const int LEN = 18;
const int D = 9;
const int S = 1<<D;
// int cnt[LEN][D][M];

ll dp[2][D][M][S];
ll cnt[LEN][D][M];

void calc() {
	for (int i = 0; i < D; i++) {
		dp[0][i][i + 1][1<<i] = 1;
	}

	for (int l = 0; l < LEN; l++) {
		int curr_l = l % 2;
		int next_l = (l + 1) % 2;

		for (int d = 0; d < D; d++) {

			for (int m = 0; m < M; m++) {

				int mod_flag = 0;

				for (int i = 0; i < D; i++) {
					if ( m % (i + 1) == 0 ) mod_flag |= (1<<i);
				}

				for (int s = 1; s < S; s++) {
					if ( dp[curr_l][d][m][s] == 0 ) continue;

					// s is a binary subset of mod_flag
					if ( (mod_flag & s) == s ) {
						cnt[l][d][m] += dp[curr_l][d][m][s];
					}

					if ( l == LEN - 1  ) continue;

					for (int i = 0; i < D; i++ ) {
						int next_m = (m * 10 + i + 1) % M;
						int next_s = s | (1<<i);
						dp[next_l][d][next_m][next_s] += dp[curr_l][d][m][s];
					}

					dp[curr_l][d][m][s] = 0;
				}
			}
		}
	}
}

ll nww(ll a, ll b) {
	return a * b / __gcd(a, b);
}

ll potyczkow_lessequal(ll x) {
	if ( x == 0 ) return 0;

	string s { to_string(x) };
	int len = s.size();

	ll sum { 0 };
	FOR(l, len - 1) {
		FOR(d, D) FOR(m, M) sum += cnt[l][d][m];
	}

	ll prefix = 0;


	vector<int> met_digits;
	for (int i = 0; i < len; i++) {
		int current_digit { s[i] - '1' };

		if ( i == len - 1 ) current_digit++;
		FOR(d, current_digit) {

			FOR(m, M) {
				// number later must be congruent mod every digit in prefix 
				//

				bool good_m = true;
				for (int md : met_digits) {
					int residue = ((-prefix % md) + md) % md;


					if ( residue != m % md ) {
						good_m = false;
					}
				}

				if ( good_m ) {
					sum += cnt[len - i - 1][d][m];
				}
			}
		}

		prefix += (current_digit + 1) * pow(10, len - i - 1);
		met_digits.push_back(current_digit + 1);
	}

	return sum;
}

bool is_potyczkow(int a) {
	int x = a;
	while ( x > 0 ) {
		int c = x % 10;
		if ( c == 0 || a % c != 0 ) 
			return false;
		x /= 10;
	}
	return true;
}


int main() {
	ios::sync_with_stdio(false); 
	cin.tie(0);

	calc();
	ll a, b;
	cin >> a >> b;
	cout << potyczkow_lessequal(b) - potyczkow_lessequal(a - 1) << endl;

	return 0;
}