#include <vector> #include <iostream> #include <cassert> #include <algorithm> #include <string> using namespace std; enum color_t { none = 0, yellow = 1, blue = 2, red = 4, }; struct order_t { int k; uint l; uint r; }; struct node_t { int k; bool v; // Just so we don't have to calculate // this every time. uint l; uint r; }; uint closest_power_of_2(uint x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } inline uint left_idx(uint parent) { return parent * 2 + 1; } inline uint right_idx(uint parent) { return parent * 2 + 2; } inline bool is_leaf(uint idx, vector<node_t>& T) { return left_idx(idx) >= T.size(); } inline int update_color(int old_color, int mix) { return old_color | mix; } void set_ranges(vector<node_t>& T, uint p, int l, int r) { node_t &parent = T[p]; parent.l = l; parent.r = r; if (is_leaf(p, T)) return; uint subrange_size = (r - l) / 2; assert(l + subrange_size + 1 == r - subrange_size); set_ranges(T, left_idx(p), l, l + subrange_size); set_ranges(T, right_idx(p), r - subrange_size, r); } void parse_order(uint p, vector<node_t>& T, order_t order, int depth) { //cout << string(depth * 3, ' ') << "[i] Parsing order: l=" << order.l << ", r=" << order.r << ", k=" << order.k << endl; node_t &parent = T[p]; if (is_leaf(p, T)) { assert(order.l == parent.l && order.r == parent.r); parent.k = update_color(parent.k, order.k); parent.v = 1; return; } node_t &left = T[left_idx(p)]; node_t &right = T[right_idx(p)]; if (parent.v) { // If valid, then push old colors down. parse_order(left_idx(p), T, {.k=parent.k, .l=left.l, .r=left.r}, depth+1); parse_order(right_idx(p), T, {.k=parent.k, .l=right.l, .r=right.r}, depth+1); parent.v = 0; } if (order.l == parent.l && order.r == parent.r) { // Just color the parent. parent.k = update_color(parent.k, order.k); parent.v = 1; return; } if (order.l <= left.r) parse_order(left_idx(p), T, {.k=order.k, .l=order.l, .r=min(order.r, left.r)}, depth+1); if (order.r >= right.l) parse_order(right_idx(p), T, {.k=order.k, .l=max(order.l, right.l), .r=order.r}, depth+1); } uint count_green_cans(vector<node_t>& T, uint limit, uint p) { node_t &parent = T[p]; if (is_leaf(p, T)) { if (parent.k == 3 && p <= limit) return 1; return 0; } node_t &left = T[left_idx(p)]; node_t &right = T[right_idx(p)]; if (parent.v) { parse_order(left_idx(p), T, {.k=parent.k, .l=left.l, .r=left.r}, 0); parse_order(right_idx(p), T, {.k=parent.k, .l=right.l, .r=right.r}, 0); } return count_green_cans(T, limit, left_idx(p)) + count_green_cans(T, limit, right_idx(p)); } int main() { // load inptut uint ncans; uint norders; cin >> ncans; cin >> norders; vector<order_t> orders; for (uint i = 0; i < norders; i++) { uint l, r, k; cin >> l; cin >> r; cin >> k; if (k == 3) k = 4; // it's easier to work on bits. orders.emplace_back(order_t{.k=k, .l=l - 1, .r=r - 1}); } // Create interval tree. uint rounded_nranges = closest_power_of_2(ncans); vector<node_t> T(rounded_nranges * 2 - 1); set_ranges(T, 0, 0, rounded_nranges - 1); T[0].k = none; T[0].v=true; // Parse orders. for (order_t& order : orders) { parse_order(0, T, order, 0); } //cout << "------------" << endl; // Find number of green cans. //cout << "ncans: " << ncans << ", rounded_nranges: " << rounded_nranges << ", limit: " << rounded_nranges + ncans - 1 << endl; uint green_cans = count_green_cans(T, rounded_nranges + ncans - 1, 0); cout << green_cans << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | #include <vector> #include <iostream> #include <cassert> #include <algorithm> #include <string> using namespace std; enum color_t { none = 0, yellow = 1, blue = 2, red = 4, }; struct order_t { int k; uint l; uint r; }; struct node_t { int k; bool v; // Just so we don't have to calculate // this every time. uint l; uint r; }; uint closest_power_of_2(uint x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } inline uint left_idx(uint parent) { return parent * 2 + 1; } inline uint right_idx(uint parent) { return parent * 2 + 2; } inline bool is_leaf(uint idx, vector<node_t>& T) { return left_idx(idx) >= T.size(); } inline int update_color(int old_color, int mix) { return old_color | mix; } void set_ranges(vector<node_t>& T, uint p, int l, int r) { node_t &parent = T[p]; parent.l = l; parent.r = r; if (is_leaf(p, T)) return; uint subrange_size = (r - l) / 2; assert(l + subrange_size + 1 == r - subrange_size); set_ranges(T, left_idx(p), l, l + subrange_size); set_ranges(T, right_idx(p), r - subrange_size, r); } void parse_order(uint p, vector<node_t>& T, order_t order, int depth) { //cout << string(depth * 3, ' ') << "[i] Parsing order: l=" << order.l << ", r=" << order.r << ", k=" << order.k << endl; node_t &parent = T[p]; if (is_leaf(p, T)) { assert(order.l == parent.l && order.r == parent.r); parent.k = update_color(parent.k, order.k); parent.v = 1; return; } node_t &left = T[left_idx(p)]; node_t &right = T[right_idx(p)]; if (parent.v) { // If valid, then push old colors down. parse_order(left_idx(p), T, {.k=parent.k, .l=left.l, .r=left.r}, depth+1); parse_order(right_idx(p), T, {.k=parent.k, .l=right.l, .r=right.r}, depth+1); parent.v = 0; } if (order.l == parent.l && order.r == parent.r) { // Just color the parent. parent.k = update_color(parent.k, order.k); parent.v = 1; return; } if (order.l <= left.r) parse_order(left_idx(p), T, {.k=order.k, .l=order.l, .r=min(order.r, left.r)}, depth+1); if (order.r >= right.l) parse_order(right_idx(p), T, {.k=order.k, .l=max(order.l, right.l), .r=order.r}, depth+1); } uint count_green_cans(vector<node_t>& T, uint limit, uint p) { node_t &parent = T[p]; if (is_leaf(p, T)) { if (parent.k == 3 && p <= limit) return 1; return 0; } node_t &left = T[left_idx(p)]; node_t &right = T[right_idx(p)]; if (parent.v) { parse_order(left_idx(p), T, {.k=parent.k, .l=left.l, .r=left.r}, 0); parse_order(right_idx(p), T, {.k=parent.k, .l=right.l, .r=right.r}, 0); } return count_green_cans(T, limit, left_idx(p)) + count_green_cans(T, limit, right_idx(p)); } int main() { // load inptut uint ncans; uint norders; cin >> ncans; cin >> norders; vector<order_t> orders; for (uint i = 0; i < norders; i++) { uint l, r, k; cin >> l; cin >> r; cin >> k; if (k == 3) k = 4; // it's easier to work on bits. orders.emplace_back(order_t{.k=k, .l=l - 1, .r=r - 1}); } // Create interval tree. uint rounded_nranges = closest_power_of_2(ncans); vector<node_t> T(rounded_nranges * 2 - 1); set_ranges(T, 0, 0, rounded_nranges - 1); T[0].k = none; T[0].v=true; // Parse orders. for (order_t& order : orders) { parse_order(0, T, order, 0); } //cout << "------------" << endl; // Find number of green cans. //cout << "ncans: " << ncans << ", rounded_nranges: " << rounded_nranges << ", limit: " << rounded_nranges + ncans - 1 << endl; uint green_cans = count_green_cans(T, rounded_nranges + ncans - 1, 0); cout << green_cans << endl; return 0; } |