#include <bits/stdc++.h> typedef long long LL; using std::vector; struct Vertex { LL weight = 0; vector<Vertex*> edges; }; struct SubtreeSolution { LL sum_squares = 0; LL top_component = 0; }; // [num cuts] => list of solutions sorted by increasing sum_squares, decreasing top_component using SubtreeSolutions = vector<vector<SubtreeSolution>>; SubtreeSolutions solve_one_vertex(Vertex *v) { return { // 0 cuts { // only one way SubtreeSolution { v->weight * v->weight, v->weight } } }; } SubtreeSolution merge_solution(const SubtreeSolution &a, const SubtreeSolution &b) { return SubtreeSolution { a.sum_squares + b.sum_squares + 2u * a.top_component * b.top_component, a.top_component + b.top_component }; } void reduce_solutions(vector<SubtreeSolution> &v) { std::sort(v.begin(), v.end(), [](const SubtreeSolution &a, const SubtreeSolution &b) { if (a.sum_squares != b.sum_squares) return a.sum_squares < b.sum_squares; return a.top_component < b.top_component; } ); auto end = v.begin(); for (auto it = v.begin(); it != v.end(); ++it) { if (end == v.begin() || (end-1)->top_component > it->top_component) { *end = *it; ++end; } } v.erase(end, v.end()); } SubtreeSolutions merge_solutions(const SubtreeSolutions &a, const SubtreeSolutions &b) { SubtreeSolutions solutions(a.size() + b.size()-1u); for (size_t cuts_a = 0; cuts_a < a.size(); ++cuts_a) { for (size_t cuts_b = 0; cuts_b < b.size(); ++cuts_b) { for (const SubtreeSolution &sol_a : a[cuts_a]) { for (const SubtreeSolution &sol_b: b[cuts_b]) { solutions[cuts_a + cuts_b].push_back(merge_solution(sol_a, sol_b)); } } } } for (auto &v : solutions) { reduce_solutions(v); } return solutions; } void add_top_edge(SubtreeSolutions &solutions) { const size_t n = solutions.size(); solutions.emplace_back(); for (size_t cuts=n;cuts>=1u;--cuts) { LL sum_squares = solutions[cuts-1].front().sum_squares; auto &v = solutions[cuts]; while (!v.empty() && v.back().sum_squares >= sum_squares) { v.pop_back(); } v.push_back(SubtreeSolution { sum_squares, 0 }); } } SubtreeSolutions solve_subtree(Vertex *v, Vertex *parent) { SubtreeSolutions solutions = solve_one_vertex(v); for (Vertex *child : v->edges) { if (child == parent) continue; SubtreeSolutions child_solutions = solve_subtree(child, v); add_top_edge(child_solutions); solutions = merge_solutions(solutions, child_solutions); } return solutions; } class Tree { public: Tree(); vector<LL> solve(); private: vector<Vertex> vertices; }; Tree::Tree() { int n; std::cin >> n; vertices.resize(n); for (int i=0;i<n;++i) { std::cin >> vertices[i].weight; } for (int i=0;i<n-1;++i) { int a,b; std::cin >> a >> b; --a; --b; vertices[a].edges.push_back(&vertices[b]); vertices[b].edges.push_back(&vertices[a]); } } vector<LL> Tree::solve() { const auto root_solution = solve_subtree(&vertices[0], nullptr); assert(root_solution.size() == vertices.size()); vector<LL> res; res.reserve(vertices.size()); for (const auto &solutions : root_solution) { assert(!solutions.empty()); res.push_back(solutions.front().sum_squares); } return res; } void print_result(const vector<LL> &res) { for (LL x : res) { std::cout << x << " "; } std::cout << "\n"; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); int ntc; std::cin >> ntc; for (int tc=0; tc<ntc; ++tc) { Tree tree; const auto res = tree.solve(); print_result(res); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | #include <bits/stdc++.h> typedef long long LL; using std::vector; struct Vertex { LL weight = 0; vector<Vertex*> edges; }; struct SubtreeSolution { LL sum_squares = 0; LL top_component = 0; }; // [num cuts] => list of solutions sorted by increasing sum_squares, decreasing top_component using SubtreeSolutions = vector<vector<SubtreeSolution>>; SubtreeSolutions solve_one_vertex(Vertex *v) { return { // 0 cuts { // only one way SubtreeSolution { v->weight * v->weight, v->weight } } }; } SubtreeSolution merge_solution(const SubtreeSolution &a, const SubtreeSolution &b) { return SubtreeSolution { a.sum_squares + b.sum_squares + 2u * a.top_component * b.top_component, a.top_component + b.top_component }; } void reduce_solutions(vector<SubtreeSolution> &v) { std::sort(v.begin(), v.end(), [](const SubtreeSolution &a, const SubtreeSolution &b) { if (a.sum_squares != b.sum_squares) return a.sum_squares < b.sum_squares; return a.top_component < b.top_component; } ); auto end = v.begin(); for (auto it = v.begin(); it != v.end(); ++it) { if (end == v.begin() || (end-1)->top_component > it->top_component) { *end = *it; ++end; } } v.erase(end, v.end()); } SubtreeSolutions merge_solutions(const SubtreeSolutions &a, const SubtreeSolutions &b) { SubtreeSolutions solutions(a.size() + b.size()-1u); for (size_t cuts_a = 0; cuts_a < a.size(); ++cuts_a) { for (size_t cuts_b = 0; cuts_b < b.size(); ++cuts_b) { for (const SubtreeSolution &sol_a : a[cuts_a]) { for (const SubtreeSolution &sol_b: b[cuts_b]) { solutions[cuts_a + cuts_b].push_back(merge_solution(sol_a, sol_b)); } } } } for (auto &v : solutions) { reduce_solutions(v); } return solutions; } void add_top_edge(SubtreeSolutions &solutions) { const size_t n = solutions.size(); solutions.emplace_back(); for (size_t cuts=n;cuts>=1u;--cuts) { LL sum_squares = solutions[cuts-1].front().sum_squares; auto &v = solutions[cuts]; while (!v.empty() && v.back().sum_squares >= sum_squares) { v.pop_back(); } v.push_back(SubtreeSolution { sum_squares, 0 }); } } SubtreeSolutions solve_subtree(Vertex *v, Vertex *parent) { SubtreeSolutions solutions = solve_one_vertex(v); for (Vertex *child : v->edges) { if (child == parent) continue; SubtreeSolutions child_solutions = solve_subtree(child, v); add_top_edge(child_solutions); solutions = merge_solutions(solutions, child_solutions); } return solutions; } class Tree { public: Tree(); vector<LL> solve(); private: vector<Vertex> vertices; }; Tree::Tree() { int n; std::cin >> n; vertices.resize(n); for (int i=0;i<n;++i) { std::cin >> vertices[i].weight; } for (int i=0;i<n-1;++i) { int a,b; std::cin >> a >> b; --a; --b; vertices[a].edges.push_back(&vertices[b]); vertices[b].edges.push_back(&vertices[a]); } } vector<LL> Tree::solve() { const auto root_solution = solve_subtree(&vertices[0], nullptr); assert(root_solution.size() == vertices.size()); vector<LL> res; res.reserve(vertices.size()); for (const auto &solutions : root_solution) { assert(!solutions.empty()); res.push_back(solutions.front().sum_squares); } return res; } void print_result(const vector<LL> &res) { for (LL x : res) { std::cout << x << " "; } std::cout << "\n"; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); int ntc; std::cin >> ntc; for (int tc=0; tc<ntc; ++tc) { Tree tree; const auto res = tree.solve(); print_result(res); } } |