#include <climits> #include <iostream> #include <numeric> #include <vector> using namespace std; typedef unsigned long UINT; typedef signed long SINT; typedef unsigned long long UINT64; typedef signed long long SINT64; [[maybe_unused]] constexpr SINT MAX_SINT = LONG_MAX; [[maybe_unused]] constexpr UINT MAX_UINT = ULONG_MAX; // Benchmark #ifdef LOCAL static std::chrono::time_point<std::chrono::steady_clock> bench_start_time; static vector<UINT> bench_analysis_levels; void bench_on_exit() { cout << flush; std::chrono::duration<double> bench_total; bench_total = chrono::steady_clock::now() - bench_start_time; cerr << "Analyzed nodes so many times, in shape of:" << endl; for (UINT i = 0; i < bench_analysis_levels.size(); i++) { cerr << " " << bench_analysis_levels[i]; } cerr << endl; double total_calls = std::accumulate(bench_analysis_levels.begin(), bench_analysis_levels.end(), 0.0); cerr << "Total analysis made: " << total_calls << endl; cerr << "Execution took " << bench_total.count() << " seconds." << endl; } #define BENCH_START \ bench_start_time = chrono::steady_clock::now(); \ atexit(bench_on_exit); #else #define BENCH_START #endif // End benchmark /** Redirect stdin to provide input with Qt Creator */ void reopenInput(int argc, char** argv) { #ifdef LOCAL if (argc > 1) { auto inFile = argv[1]; cerr << "Reopening stdin to: " << inFile << endl; auto success = freopen(inFile, "r", stdin); if (!success) { cerr << "Error when opening file!" << endl; cerr << std::strerror(errno) << endl; } } #endif } /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ #undef VERBOSE static SINT64 grid_surplus; // Industrialized city (grid node) struct Node { // distances to neighbouring nodes UINT distLeft = 0; UINT distRight = 0; // power in the node SINT power = 0; SINT64 surplus_on_left = 0; /// Tests whether connection with the previous grid node is required. bool inline canStartIsland() { return(this->surplus_on_left >= 0 && this->surplus_on_left <= grid_surplus); } }; #define PRINT_NODE(node) node.power << " MW, " \ << node.distLeft << " away from previous and " \ << node.distRight << " from next, " // Description of one or more islands analyzed struct Islands { bool defined = false; UINT cost = 0; SINT power_lost = 0; }; typedef vector<Node> Grid; constexpr UINT NOT_FOUND = MAX_UINT; static vector<SINT> cities; static vector<Islands> islands; static Grid grid; static UINT n; static UINT deliberate_costs = 0; static UINT last_factory_at = NOT_FOUND; [[ noreturn ]] void fail() { cout << -1 << endl; exit(0); } [[ noreturn ]] void success(UINT cost) { UINT total_cost = cost + deliberate_costs; cout << total_cost << endl; exit(0); } void processInput() { cin >> n; cerr << "N: " << n << endl; cities.resize(n); for (UINT i = 0; i < n; i++) { cin >> cities[i]; #ifdef VERBOSE cerr << " City " << i+1 << ": " << cities[i] << endl; #endif } } // O(n) void compactData() { cerr << "Compacting data" << endl; grid.reserve(cities.size()); UINT distance = 0; for (auto &cityPower : cities) { if (cityPower == 0) { distance++; } else { Node node; node.power = cityPower; node.distLeft = distance; grid.push_back(node); if (grid.size() > 1) grid[grid.size() - 2].distRight = distance; distance = 1; } } #ifdef VERBOSE for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; cerr << " Electric city " << i << ": " << PRINT_NODE(node) << endl; } #endif } // O(n) void makeDeliberateConnections() { // Merge rightmost energy consuming nodes while (grid.size() > 2) { Node &last = grid[grid.size() - 1]; if (last.power > 0) break; Node &prev = grid[grid.size() - 2]; prev.power += last.power; deliberate_costs += prev.distRight; prev.distRight = 0; grid.pop_back(); #ifdef VERBOSE cerr << "Merging last two nodes, new one is: " << PRINT_NODE(prev) << endl; #endif } } void analyze(UINT grid_idx, UINT cost, SINT64 curr_surplus, Islands &retval) { #ifdef LOCAL bench_analysis_levels[grid_idx]+=1; #endif Node &curr_node = grid[grid_idx]; Islands& next_islands = islands[grid_idx + 1]; curr_surplus += curr_node.power; if (grid_idx >= grid.size() - 1) { // last // Islands finalIsle; retval.cost = cost; retval.defined = true; retval.power_lost = curr_surplus; return; } SINT64 power_lost_on_cut = curr_surplus + next_islands.power_lost; // try connecting next node and set analysis result to retval analyze(grid_idx + 1, cost + curr_node.distRight, curr_surplus, retval); // try making a cut if (curr_surplus >= 0 && next_islands.defined && power_lost_on_cut <= grid_surplus) { auto new_islands_cost = next_islands.cost + cost; if (new_islands_cost < retval.cost) { retval.cost = new_islands_cost; retval.power_lost = power_lost_on_cut; retval.defined = true; } } } [[ noreturn ]] void analyzeGrid() { islands.resize(grid.size() + 1); // with trailing (guard) empty island islands[grid.size()].defined = true; // mark guard as defined for (UINT j = grid.size(); j-- > 0; ) { // from last to first if (!grid[j].canStartIsland()) continue; analyze(j, 0, 0, islands[j]); } if (islands[0].defined) { success(islands[0].cost); } else { cerr << "SHOULD NEVER HAPPEN!!!"; fail(); } } [[ noreturn ]] int main(int argc, char** argv) { BENCH_START reopenInput(argc, argv); processInput(); compactData(); makeDeliberateConnections(); // Calculate grid surplus and last factory index for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; node.surplus_on_left = grid_surplus; grid_surplus += node.power; if (node.power < 0) last_factory_at = i; } #ifdef LOCAL bench_analysis_levels.resize(grid.size()); #endif // Easy answers if (grid_surplus < 0) { cerr << "Not enough power: " << grid_surplus << " MW" << endl; fail(); } if (last_factory_at == NOT_FOUND) { cerr << "There aren't any factories." << endl; success(0); } #ifdef VERBOSE for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; cerr << " Electric city " << i << ": " << PRINT_NODE(node) << endl; } #endif cerr << "Electric cities: " << grid.size() << endl; cerr << "Surplus power: " << grid_surplus << " MW" << endl; cerr << "Last factory: " << PRINT_NODE(grid[last_factory_at]) << endl; cerr << flush; analyzeGrid(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | #include <climits> #include <iostream> #include <numeric> #include <vector> using namespace std; typedef unsigned long UINT; typedef signed long SINT; typedef unsigned long long UINT64; typedef signed long long SINT64; [[maybe_unused]] constexpr SINT MAX_SINT = LONG_MAX; [[maybe_unused]] constexpr UINT MAX_UINT = ULONG_MAX; // Benchmark #ifdef LOCAL static std::chrono::time_point<std::chrono::steady_clock> bench_start_time; static vector<UINT> bench_analysis_levels; void bench_on_exit() { cout << flush; std::chrono::duration<double> bench_total; bench_total = chrono::steady_clock::now() - bench_start_time; cerr << "Analyzed nodes so many times, in shape of:" << endl; for (UINT i = 0; i < bench_analysis_levels.size(); i++) { cerr << " " << bench_analysis_levels[i]; } cerr << endl; double total_calls = std::accumulate(bench_analysis_levels.begin(), bench_analysis_levels.end(), 0.0); cerr << "Total analysis made: " << total_calls << endl; cerr << "Execution took " << bench_total.count() << " seconds." << endl; } #define BENCH_START \ bench_start_time = chrono::steady_clock::now(); \ atexit(bench_on_exit); #else #define BENCH_START #endif // End benchmark /** Redirect stdin to provide input with Qt Creator */ void reopenInput(int argc, char** argv) { #ifdef LOCAL if (argc > 1) { auto inFile = argv[1]; cerr << "Reopening stdin to: " << inFile << endl; auto success = freopen(inFile, "r", stdin); if (!success) { cerr << "Error when opening file!" << endl; cerr << std::strerror(errno) << endl; } } #endif } /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ #undef VERBOSE static SINT64 grid_surplus; // Industrialized city (grid node) struct Node { // distances to neighbouring nodes UINT distLeft = 0; UINT distRight = 0; // power in the node SINT power = 0; SINT64 surplus_on_left = 0; /// Tests whether connection with the previous grid node is required. bool inline canStartIsland() { return(this->surplus_on_left >= 0 && this->surplus_on_left <= grid_surplus); } }; #define PRINT_NODE(node) node.power << " MW, " \ << node.distLeft << " away from previous and " \ << node.distRight << " from next, " // Description of one or more islands analyzed struct Islands { bool defined = false; UINT cost = 0; SINT power_lost = 0; }; typedef vector<Node> Grid; constexpr UINT NOT_FOUND = MAX_UINT; static vector<SINT> cities; static vector<Islands> islands; static Grid grid; static UINT n; static UINT deliberate_costs = 0; static UINT last_factory_at = NOT_FOUND; [[ noreturn ]] void fail() { cout << -1 << endl; exit(0); } [[ noreturn ]] void success(UINT cost) { UINT total_cost = cost + deliberate_costs; cout << total_cost << endl; exit(0); } void processInput() { cin >> n; cerr << "N: " << n << endl; cities.resize(n); for (UINT i = 0; i < n; i++) { cin >> cities[i]; #ifdef VERBOSE cerr << " City " << i+1 << ": " << cities[i] << endl; #endif } } // O(n) void compactData() { cerr << "Compacting data" << endl; grid.reserve(cities.size()); UINT distance = 0; for (auto &cityPower : cities) { if (cityPower == 0) { distance++; } else { Node node; node.power = cityPower; node.distLeft = distance; grid.push_back(node); if (grid.size() > 1) grid[grid.size() - 2].distRight = distance; distance = 1; } } #ifdef VERBOSE for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; cerr << " Electric city " << i << ": " << PRINT_NODE(node) << endl; } #endif } // O(n) void makeDeliberateConnections() { // Merge rightmost energy consuming nodes while (grid.size() > 2) { Node &last = grid[grid.size() - 1]; if (last.power > 0) break; Node &prev = grid[grid.size() - 2]; prev.power += last.power; deliberate_costs += prev.distRight; prev.distRight = 0; grid.pop_back(); #ifdef VERBOSE cerr << "Merging last two nodes, new one is: " << PRINT_NODE(prev) << endl; #endif } } void analyze(UINT grid_idx, UINT cost, SINT64 curr_surplus, Islands &retval) { #ifdef LOCAL bench_analysis_levels[grid_idx]+=1; #endif Node &curr_node = grid[grid_idx]; Islands& next_islands = islands[grid_idx + 1]; curr_surplus += curr_node.power; if (grid_idx >= grid.size() - 1) { // last // Islands finalIsle; retval.cost = cost; retval.defined = true; retval.power_lost = curr_surplus; return; } SINT64 power_lost_on_cut = curr_surplus + next_islands.power_lost; // try connecting next node and set analysis result to retval analyze(grid_idx + 1, cost + curr_node.distRight, curr_surplus, retval); // try making a cut if (curr_surplus >= 0 && next_islands.defined && power_lost_on_cut <= grid_surplus) { auto new_islands_cost = next_islands.cost + cost; if (new_islands_cost < retval.cost) { retval.cost = new_islands_cost; retval.power_lost = power_lost_on_cut; retval.defined = true; } } } [[ noreturn ]] void analyzeGrid() { islands.resize(grid.size() + 1); // with trailing (guard) empty island islands[grid.size()].defined = true; // mark guard as defined for (UINT j = grid.size(); j-- > 0; ) { // from last to first if (!grid[j].canStartIsland()) continue; analyze(j, 0, 0, islands[j]); } if (islands[0].defined) { success(islands[0].cost); } else { cerr << "SHOULD NEVER HAPPEN!!!"; fail(); } } [[ noreturn ]] int main(int argc, char** argv) { BENCH_START reopenInput(argc, argv); processInput(); compactData(); makeDeliberateConnections(); // Calculate grid surplus and last factory index for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; node.surplus_on_left = grid_surplus; grid_surplus += node.power; if (node.power < 0) last_factory_at = i; } #ifdef LOCAL bench_analysis_levels.resize(grid.size()); #endif // Easy answers if (grid_surplus < 0) { cerr << "Not enough power: " << grid_surplus << " MW" << endl; fail(); } if (last_factory_at == NOT_FOUND) { cerr << "There aren't any factories." << endl; success(0); } #ifdef VERBOSE for (UINT i = 0; i < grid.size(); i++) { auto &node = grid[i]; cerr << " Electric city " << i << ": " << PRINT_NODE(node) << endl; } #endif cerr << "Electric cities: " << grid.size() << endl; cerr << "Surplus power: " << grid_surplus << " MW" << endl; cerr << "Last factory: " << PRINT_NODE(grid[last_factory_at]) << endl; cerr << flush; analyzeGrid(); } |