#include <bits/stdc++.h> using namespace std; // https://github.com/kth-competitive-programming/kactl/blob/master/content/data-structures/LineContainer.h using ll = long long; struct Line { mutable ll k, m, p; bool operator<(const Line& o) const { return k < o.k; } bool operator<(ll x) const { return p < x; } ll operator()(ll x) const { return k * x + m; } }; struct LineContainer : multiset<Line, less<>> { // (for doubles, use inf = 1/.0, div(a,b) = a/b) static const ll inf = LLONG_MAX; ll div(ll a, ll b) { // floored division return a / b - ((a ^ b) < 0 && a % b); } bool isect(iterator x, iterator y) { if (y == end()) return x->p = inf, 0; if (x->k == y->k) x->p = x->m > y->m ? inf : -inf; else x->p = div(y->m - x->m, x->k - y->k); return x->p >= y->p; } void add(ll k, ll m) { // cerr << " >>> ADDING : " << k << " " << m << endl; auto z = insert({k, m, 0}), y = z++, x = y; while (isect(y, z)) z = erase(z); if (x != begin() && isect(--x, y)) isect(x, y = erase(y)); while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y)); } ll query(ll x) { assert(!empty()); auto l = *lower_bound(x); return l.k * x + l.m; } Line query_line(ll x) { assert(!empty()); return *lower_bound(x); } auto query_iterator(ll x) { assert(!empty()); return lower_bound(x); } }; struct TestCase { int n; vector<long long> weights; vector<vector<int>> graph; vector<int> subtree_size; vector<vector<LineContainer>> dp; static constexpr int ROOT = 0; static constexpr int ITERS = 8; void compute_dp(int v = ROOT, int parent = -1) { subtree_size[v] = 1; dp[v].resize(subtree_size[v] + 1); dp[v][1].add(-2 * weights[v], -weights[v] * weights[v]); for (auto u : graph[v]) { if (u != parent) { compute_dp(u, v); vector<LineContainer> next_dp(subtree_size[v] + subtree_size[u] + 1); for (int x = 1; x <= subtree_size[v]; x++) { for (int y = 1; y <= subtree_size[u]; y++) { for (auto my_line : dp[v][x]) { for (auto line : dp[u][y]) { // everything negative auto weight = -line.k / 2; auto cost = my_line(weight) + line.m; auto total_weight = -weight + my_line.k / 2; next_dp[x + y].add(my_line.k, my_line.m + line.m); next_dp[x + y - 1].add(2 * total_weight, cost); } } /* for (auto line : dp[u][y]) { // everything negative auto weight = -line.k / 2; auto it = dp[v][x].query_iterator(weight); for (int i = 0; i < ITERS; i++) { if (it != dp[v][x].begin()) { --it; } else { break; } } for (int i = 0; i < 2 * ITERS; i++) { if (it == dp[v][x].end()) break; auto my_line = *it; auto cost = my_line(weight) + line.m; auto total_weight = -weight + my_line.k / 2; next_dp[x + y].add(my_line.k, my_line.m + line.m); next_dp[x + y - 1].add(2 * total_weight, cost); ++it; } } */ } } dp[v] = move(next_dp); subtree_size[v] += subtree_size[u]; /* cerr << " [NEXT_DP " << u + 1 << "] NODE : " << v + 1 << endl; for (int i = 1; i <= subtree_size[v]; i++) { cerr << " " << i << endl; for (auto line : dp[v][i]) { cerr << " " << line.k << " " << line.m << endl; } } */ } } /* cerr << " NODE : " << v + 1 << endl; for (int i = 1; i <= subtree_size[v]; i++) { cerr << " " << i << endl; for (auto line : dp[v][i]) { cerr << " " << line.k << " " << line.m << endl; } } */ } void solve() { cin >> n; weights.resize(n); for (auto& x : weights) { cin >> x; } graph.resize(n); for (int i = 0; i < n - 1; i++) { int b, c; cin >> b >> c; b--, c--; graph[b].push_back(c); graph[c].push_back(b); } subtree_size.resize(n); dp.resize(n); compute_dp(); for (int i = 1; i <= n; i++) { long long mn = numeric_limits<long long>::max(); for (auto line : dp[ROOT][i]) { mn = min(mn, -line.m); } // long long mn = -dp[ROOT][i].begin()->m; cout << mn << " "; } cout << "\n"; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; while (T--) { TestCase().solve(); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | #include <bits/stdc++.h> using namespace std; // https://github.com/kth-competitive-programming/kactl/blob/master/content/data-structures/LineContainer.h using ll = long long; struct Line { mutable ll k, m, p; bool operator<(const Line& o) const { return k < o.k; } bool operator<(ll x) const { return p < x; } ll operator()(ll x) const { return k * x + m; } }; struct LineContainer : multiset<Line, less<>> { // (for doubles, use inf = 1/.0, div(a,b) = a/b) static const ll inf = LLONG_MAX; ll div(ll a, ll b) { // floored division return a / b - ((a ^ b) < 0 && a % b); } bool isect(iterator x, iterator y) { if (y == end()) return x->p = inf, 0; if (x->k == y->k) x->p = x->m > y->m ? inf : -inf; else x->p = div(y->m - x->m, x->k - y->k); return x->p >= y->p; } void add(ll k, ll m) { // cerr << " >>> ADDING : " << k << " " << m << endl; auto z = insert({k, m, 0}), y = z++, x = y; while (isect(y, z)) z = erase(z); if (x != begin() && isect(--x, y)) isect(x, y = erase(y)); while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y)); } ll query(ll x) { assert(!empty()); auto l = *lower_bound(x); return l.k * x + l.m; } Line query_line(ll x) { assert(!empty()); return *lower_bound(x); } auto query_iterator(ll x) { assert(!empty()); return lower_bound(x); } }; struct TestCase { int n; vector<long long> weights; vector<vector<int>> graph; vector<int> subtree_size; vector<vector<LineContainer>> dp; static constexpr int ROOT = 0; static constexpr int ITERS = 8; void compute_dp(int v = ROOT, int parent = -1) { subtree_size[v] = 1; dp[v].resize(subtree_size[v] + 1); dp[v][1].add(-2 * weights[v], -weights[v] * weights[v]); for (auto u : graph[v]) { if (u != parent) { compute_dp(u, v); vector<LineContainer> next_dp(subtree_size[v] + subtree_size[u] + 1); for (int x = 1; x <= subtree_size[v]; x++) { for (int y = 1; y <= subtree_size[u]; y++) { for (auto my_line : dp[v][x]) { for (auto line : dp[u][y]) { // everything negative auto weight = -line.k / 2; auto cost = my_line(weight) + line.m; auto total_weight = -weight + my_line.k / 2; next_dp[x + y].add(my_line.k, my_line.m + line.m); next_dp[x + y - 1].add(2 * total_weight, cost); } } /* for (auto line : dp[u][y]) { // everything negative auto weight = -line.k / 2; auto it = dp[v][x].query_iterator(weight); for (int i = 0; i < ITERS; i++) { if (it != dp[v][x].begin()) { --it; } else { break; } } for (int i = 0; i < 2 * ITERS; i++) { if (it == dp[v][x].end()) break; auto my_line = *it; auto cost = my_line(weight) + line.m; auto total_weight = -weight + my_line.k / 2; next_dp[x + y].add(my_line.k, my_line.m + line.m); next_dp[x + y - 1].add(2 * total_weight, cost); ++it; } } */ } } dp[v] = move(next_dp); subtree_size[v] += subtree_size[u]; /* cerr << " [NEXT_DP " << u + 1 << "] NODE : " << v + 1 << endl; for (int i = 1; i <= subtree_size[v]; i++) { cerr << " " << i << endl; for (auto line : dp[v][i]) { cerr << " " << line.k << " " << line.m << endl; } } */ } } /* cerr << " NODE : " << v + 1 << endl; for (int i = 1; i <= subtree_size[v]; i++) { cerr << " " << i << endl; for (auto line : dp[v][i]) { cerr << " " << line.k << " " << line.m << endl; } } */ } void solve() { cin >> n; weights.resize(n); for (auto& x : weights) { cin >> x; } graph.resize(n); for (int i = 0; i < n - 1; i++) { int b, c; cin >> b >> c; b--, c--; graph[b].push_back(c); graph[c].push_back(b); } subtree_size.resize(n); dp.resize(n); compute_dp(); for (int i = 1; i <= n; i++) { long long mn = numeric_limits<long long>::max(); for (auto line : dp[ROOT][i]) { mn = min(mn, -line.m); } // long long mn = -dp[ROOT][i].begin()->m; cout << mn << " "; } cout << "\n"; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; while (T--) { TestCase().solve(); } } |