#include <bits/stdc++.h> using namespace std; typedef unsigned long long ull; typedef long long ll; typedef long double ld; typedef pair<int, int> PII; typedef pair<ll, int> PILL; typedef pair<ll, ll> PLL; const int MAX_N = 5e5+5; const int M = 1e6; const ll INF = (ll)(1e18); const int inf = 2e9; const ll MOD = 1000000007LL; int n; ll a[MAX_N], pref[MAX_N]; vector<ll> com; map<ll, int> prefToPos; int dp[MAX_N][2]; bool canCut[MAX_N]; // Segment tree int treeSize = 0; int t[4*MAX_N]; void update(int v, int l, int r, int pos, int val) { if (l > pos || r < pos) return; if (l == pos && r == pos) { t[v] = max(t[v], val); return; } int mid = (l+r) / 2; update(2*v, l, mid, pos, val); update(2*v+1, mid+1, r, pos, val); t[v] = max(t[2*v], t[2*v+1]); } int query(int v, int l, int r, int qL, int qR) { if (qL <= l && r <= qR) return t[v]; if (l > qR || r < qL) return 0; int mid = (l+r) / 2; return max(query(2*v, l, mid, qL, qR), query(2*v+1, mid+1, r, qL, qR)); } void brute() { for (int i = 1; i <= n; i++) { pref[i] = pref[i-1] + a[i]; } canCut[0] = true; for (int i = 1; i < n; i++) { if (pref[n] - pref[i] < 0) { dp[i][0] = max(dp[i-1][0], dp[i-1][1]); dp[i][1] = 0LL; continue; } dp[i][0] = max(dp[i-1][0], dp[i-1][1]); for (int j = i-1; j >= 0; j--) { if (!canCut[j] || pref[j] > pref[i]) continue; canCut[i] = true; dp[i][1] = max(dp[i][1], dp[j][1] + 1); } } int ans = 0; for (int i = 0; i < n; i++) { //cout << i << ": " << dp[i][0] << ' ' << dp[i][1] << '\n'; ans = max(ans, dp[i][0]); ans = max(ans, dp[i][1]); } cout << n - 1 - ans << '\n'; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; ll total = 0LL; for (int i = 1; i <= n; i++) { cin >> a[i]; total += a[i]; } if (total < 0) { cout << "-1\n"; return 0; } if (n <= 5000) { brute(); return 0; } com.push_back(0LL); // empty prefix for (int i = 1; i <= n; i++) { pref[i] = pref[i-1] + a[i]; com.push_back(pref[i]); } // Recalculate prefix vals sort(com.begin(), com.end()); auto it = unique(com.begin(), com.end()); com.resize(distance(com.begin(), it)); for (int i = 0; i < (int)com.size(); i++) { prefToPos[com[i]] = i+1; } treeSize = (int)com.size(); /*for (auto it2: prefToPos) { cout << it2.first << ": " << it2.second << '\n'; } cout << "\n\n";*/ for (int i = 1; i < n; i++) { if (pref[n] - pref[i] < 0 || pref[i] < 0) { dp[i][0] = max(dp[i-1][0], dp[i-1][1]); dp[i][1] = 0LL; continue; } dp[i][0] = max(dp[i-1][0], dp[i-1][1]); int r = prefToPos[pref[i]]; int bestPrv = query(1, 1, treeSize, 1, r); //cout << i << ": " << r << " " << bestPrv << '\n'; dp[i][1] = bestPrv + 1; update(1, 1, treeSize, r, dp[i][1]); } //cout << "\n\n"; int ans = 0; for (int i = 0; i < n; i++) { //cout << i << ": " << dp[i][0] << ' ' << dp[i][1] << '\n'; ans = max(ans, dp[i][0]); ans = max(ans, dp[i][1]); } cout << n - 1 - ans << '\n'; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | #include <bits/stdc++.h> using namespace std; typedef unsigned long long ull; typedef long long ll; typedef long double ld; typedef pair<int, int> PII; typedef pair<ll, int> PILL; typedef pair<ll, ll> PLL; const int MAX_N = 5e5+5; const int M = 1e6; const ll INF = (ll)(1e18); const int inf = 2e9; const ll MOD = 1000000007LL; int n; ll a[MAX_N], pref[MAX_N]; vector<ll> com; map<ll, int> prefToPos; int dp[MAX_N][2]; bool canCut[MAX_N]; // Segment tree int treeSize = 0; int t[4*MAX_N]; void update(int v, int l, int r, int pos, int val) { if (l > pos || r < pos) return; if (l == pos && r == pos) { t[v] = max(t[v], val); return; } int mid = (l+r) / 2; update(2*v, l, mid, pos, val); update(2*v+1, mid+1, r, pos, val); t[v] = max(t[2*v], t[2*v+1]); } int query(int v, int l, int r, int qL, int qR) { if (qL <= l && r <= qR) return t[v]; if (l > qR || r < qL) return 0; int mid = (l+r) / 2; return max(query(2*v, l, mid, qL, qR), query(2*v+1, mid+1, r, qL, qR)); } void brute() { for (int i = 1; i <= n; i++) { pref[i] = pref[i-1] + a[i]; } canCut[0] = true; for (int i = 1; i < n; i++) { if (pref[n] - pref[i] < 0) { dp[i][0] = max(dp[i-1][0], dp[i-1][1]); dp[i][1] = 0LL; continue; } dp[i][0] = max(dp[i-1][0], dp[i-1][1]); for (int j = i-1; j >= 0; j--) { if (!canCut[j] || pref[j] > pref[i]) continue; canCut[i] = true; dp[i][1] = max(dp[i][1], dp[j][1] + 1); } } int ans = 0; for (int i = 0; i < n; i++) { //cout << i << ": " << dp[i][0] << ' ' << dp[i][1] << '\n'; ans = max(ans, dp[i][0]); ans = max(ans, dp[i][1]); } cout << n - 1 - ans << '\n'; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; ll total = 0LL; for (int i = 1; i <= n; i++) { cin >> a[i]; total += a[i]; } if (total < 0) { cout << "-1\n"; return 0; } if (n <= 5000) { brute(); return 0; } com.push_back(0LL); // empty prefix for (int i = 1; i <= n; i++) { pref[i] = pref[i-1] + a[i]; com.push_back(pref[i]); } // Recalculate prefix vals sort(com.begin(), com.end()); auto it = unique(com.begin(), com.end()); com.resize(distance(com.begin(), it)); for (int i = 0; i < (int)com.size(); i++) { prefToPos[com[i]] = i+1; } treeSize = (int)com.size(); /*for (auto it2: prefToPos) { cout << it2.first << ": " << it2.second << '\n'; } cout << "\n\n";*/ for (int i = 1; i < n; i++) { if (pref[n] - pref[i] < 0 || pref[i] < 0) { dp[i][0] = max(dp[i-1][0], dp[i-1][1]); dp[i][1] = 0LL; continue; } dp[i][0] = max(dp[i-1][0], dp[i-1][1]); int r = prefToPos[pref[i]]; int bestPrv = query(1, 1, treeSize, 1, r); //cout << i << ": " << r << " " << bestPrv << '\n'; dp[i][1] = bestPrv + 1; update(1, 1, treeSize, r, dp[i][1]); } //cout << "\n\n"; int ans = 0; for (int i = 0; i < n; i++) { //cout << i << ": " << dp[i][0] << ' ' << dp[i][1] << '\n'; ans = max(ans, dp[i][0]); ans = max(ans, dp[i][1]); } cout << n - 1 - ans << '\n'; return 0; } |