#include <bits/stdc++.h> #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) std::cerr << "TRACE(" #x ")" << std::endl; #define DEBUG(x) std::cerr << #x << " = " << (x) << std::endl; typedef long long LL; typedef unsigned long long ULL; void init_io() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } private: unsigned v; }; using Mod = Modulo<1'000'000'007>; class Minimizer { public: explicit Minimizer(int size); bool empty() const { return counts[1] == 0; } void insert(int x); void erase(int x); int first() const; private: int m_size; std::vector<int> counts; }; Minimizer::Minimizer(int size) { m_size = 1; while(m_size < size) m_size <<= 1; counts.assign(2*m_size, 0); } void Minimizer::insert(int x) { x += m_size; while(x) { counts[x]+=1; x >>= 1; } } void Minimizer::erase(int x) { x += m_size; if (!counts[x]) return; while(x) { counts[x]-=1; x >>= 1; } } int Minimizer::first() const { int p = 1; while (p < m_size) { p <<= 1; if (!counts[p]) ++p; } return p - m_size; } struct Mine { LL position = 0; LL radius = 0; int range_a = -1; int range_b = -1; // Only for left-most trigger mines. int chain_a = -1; int chain_b = -1; }; struct Vertex { int dfs_index = -1; int lowlink = -1; int chain_a = -1; int chain_b = -1; }; class Minefield { public: Minefield(); Mod calc_possibilities(); private: int find_mine_ge(LL pos); void strongly_connected_components(); void strongly_connected_components_dfs(int p); template<typename F> void for_each_successor(int p, F f); void calc_next_chain_reaches(); void calc_suffix_possibilities(); int num_mines = 0; std::vector<Mine> mines; // SCC std::vector<Vertex> vertices; std::vector<int> scc_stack; int next_dfs_index = 0; std::vector<int> next_chain_reaches; std::vector<Mod> suffix_possibilities; }; Minefield::Minefield() { std::cin >> num_mines; mines.reserve(num_mines); REP(i, num_mines) { Mine mine; std::cin >> mine.position >> mine.radius; mines.push_back(mine); } for (Mine &mine : mines) { mine.range_a = find_mine_ge(mine.position - mine.radius); mine.range_b = find_mine_ge(mine.position + mine.radius + 1); } } template<typename F> void Minefield::for_each_successor(int p, F f) { if (p < num_mines) { for (int i=0;i<2;++i) { int q = 2*p+i; if (q < 2*num_mines) { f(q); } } } else { const Mine &mine = mines[p - num_mines]; int a = num_mines + mine.range_a; int b = num_mines + mine.range_b; while (a!=b) { if (a&1) { f(a); ++a; } if (b&1) { --b; f(b); } a >>= 1; b >>= 1; } } } Mod Minefield::calc_possibilities() { strongly_connected_components(); calc_next_chain_reaches(); calc_suffix_possibilities(); return suffix_possibilities[0]; } int Minefield::find_mine_ge(LL pos) { auto it = std::lower_bound(mines.begin(), mines.end(), pos, [](const Mine &mine, LL x) { return mine.position < x; }); return it - mines.begin(); } void Minefield::strongly_connected_components() { vertices.resize(2 * num_mines); for (int i=num_mines; i<2*num_mines; ++i) { if (vertices[i].dfs_index == -1) { strongly_connected_components_dfs(i); } } } void Minefield::strongly_connected_components_dfs(int p) { Vertex &v = vertices[p]; v.dfs_index = next_dfs_index++; v.lowlink = v.dfs_index; scc_stack.push_back(p); for_each_successor(p, [&](int q) { Vertex &w = vertices[q]; if (w.dfs_index == -1) { strongly_connected_components_dfs(q); v.lowlink = std::min(v.lowlink, w.lowlink); } else if (w.chain_b == -1) { // on stack v.lowlink = std::min(v.lowlink, w.dfs_index); } }); if (v.lowlink == v.dfs_index) { auto component_start = scc_stack.end(); for(;;) { assert(component_start != scc_stack.begin()); --component_start; if (*component_start == p) break; } int chain_a = num_mines; int chain_b = 0; int trigger_mine = num_mines; for (auto it = component_start; it != scc_stack.end(); ++it) { int q = *it; if (q >= num_mines) { int mine_idx = q - num_mines; trigger_mine = std::min(trigger_mine, mine_idx); chain_a = std::min(chain_a, mines[mine_idx].range_a); chain_b = std::max(chain_b, mines[mine_idx].range_b); } for_each_successor(q, [&](int r) { if (vertices[r].chain_a != -1) { chain_a = std::min(chain_a, vertices[r].chain_a); chain_b = std::max(chain_b, vertices[r].chain_b); } }); } for (auto it = component_start; it != scc_stack.end(); ++it) { vertices[*it].chain_a = chain_a; vertices[*it].chain_b = chain_b; } if (trigger_mine != num_mines) { mines[trigger_mine].chain_a = chain_a; mines[trigger_mine].chain_b = chain_b; } scc_stack.erase(component_start, scc_stack.end()); } } void Minefield::calc_next_chain_reaches() { std::vector<std::pair<int, int>> by_chain_a; by_chain_a.reserve(num_mines); REP(i, num_mines) if (mines[i].chain_a != -1) { by_chain_a.emplace_back(mines[i].chain_a, i); } std::sort(by_chain_a.begin(), by_chain_a.end()); auto by_chain_a_it = by_chain_a.begin(); Minimizer reach_here(num_mines); next_chain_reaches.assign(num_mines, -1); REP(i, num_mines) if (mines[i].chain_a != -1) { while (by_chain_a_it != by_chain_a.end() && by_chain_a_it->first <= i) { reach_here.insert(by_chain_a_it->second); ++by_chain_a_it; } reach_here.erase(i); if (!reach_here.empty()) { next_chain_reaches[i] = reach_here.first(); } } } void Minefield::calc_suffix_possibilities() { suffix_possibilities.resize(num_mines+1); suffix_possibilities[num_mines] = 1; FORD(i,num_mines-1,0) { suffix_possibilities[i] = 0; // Explode first mine. if (mines[i].chain_b != -1) { suffix_possibilities[i] += suffix_possibilities[mines[i].chain_b]; } // Don't explode first mine. suffix_possibilities[i] += suffix_possibilities[i+1]; // Have to subtract those cases that reach here, i.e. those that explode `next`. int next = next_chain_reaches[i]; if (next != -1) { assert(mines[next].chain_b != -1); suffix_possibilities[i] -= suffix_possibilities[mines[next].chain_b]; } } } int main() { init_io(); Minefield minefield; const Mod res = minefield.calc_possibilities(); std::cout << res.get() << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | #include <bits/stdc++.h> #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) std::cerr << "TRACE(" #x ")" << std::endl; #define DEBUG(x) std::cerr << #x << " = " << (x) << std::endl; typedef long long LL; typedef unsigned long long ULL; void init_io() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } private: unsigned v; }; using Mod = Modulo<1'000'000'007>; class Minimizer { public: explicit Minimizer(int size); bool empty() const { return counts[1] == 0; } void insert(int x); void erase(int x); int first() const; private: int m_size; std::vector<int> counts; }; Minimizer::Minimizer(int size) { m_size = 1; while(m_size < size) m_size <<= 1; counts.assign(2*m_size, 0); } void Minimizer::insert(int x) { x += m_size; while(x) { counts[x]+=1; x >>= 1; } } void Minimizer::erase(int x) { x += m_size; if (!counts[x]) return; while(x) { counts[x]-=1; x >>= 1; } } int Minimizer::first() const { int p = 1; while (p < m_size) { p <<= 1; if (!counts[p]) ++p; } return p - m_size; } struct Mine { LL position = 0; LL radius = 0; int range_a = -1; int range_b = -1; // Only for left-most trigger mines. int chain_a = -1; int chain_b = -1; }; struct Vertex { int dfs_index = -1; int lowlink = -1; int chain_a = -1; int chain_b = -1; }; class Minefield { public: Minefield(); Mod calc_possibilities(); private: int find_mine_ge(LL pos); void strongly_connected_components(); void strongly_connected_components_dfs(int p); template<typename F> void for_each_successor(int p, F f); void calc_next_chain_reaches(); void calc_suffix_possibilities(); int num_mines = 0; std::vector<Mine> mines; // SCC std::vector<Vertex> vertices; std::vector<int> scc_stack; int next_dfs_index = 0; std::vector<int> next_chain_reaches; std::vector<Mod> suffix_possibilities; }; Minefield::Minefield() { std::cin >> num_mines; mines.reserve(num_mines); REP(i, num_mines) { Mine mine; std::cin >> mine.position >> mine.radius; mines.push_back(mine); } for (Mine &mine : mines) { mine.range_a = find_mine_ge(mine.position - mine.radius); mine.range_b = find_mine_ge(mine.position + mine.radius + 1); } } template<typename F> void Minefield::for_each_successor(int p, F f) { if (p < num_mines) { for (int i=0;i<2;++i) { int q = 2*p+i; if (q < 2*num_mines) { f(q); } } } else { const Mine &mine = mines[p - num_mines]; int a = num_mines + mine.range_a; int b = num_mines + mine.range_b; while (a!=b) { if (a&1) { f(a); ++a; } if (b&1) { --b; f(b); } a >>= 1; b >>= 1; } } } Mod Minefield::calc_possibilities() { strongly_connected_components(); calc_next_chain_reaches(); calc_suffix_possibilities(); return suffix_possibilities[0]; } int Minefield::find_mine_ge(LL pos) { auto it = std::lower_bound(mines.begin(), mines.end(), pos, [](const Mine &mine, LL x) { return mine.position < x; }); return it - mines.begin(); } void Minefield::strongly_connected_components() { vertices.resize(2 * num_mines); for (int i=num_mines; i<2*num_mines; ++i) { if (vertices[i].dfs_index == -1) { strongly_connected_components_dfs(i); } } } void Minefield::strongly_connected_components_dfs(int p) { Vertex &v = vertices[p]; v.dfs_index = next_dfs_index++; v.lowlink = v.dfs_index; scc_stack.push_back(p); for_each_successor(p, [&](int q) { Vertex &w = vertices[q]; if (w.dfs_index == -1) { strongly_connected_components_dfs(q); v.lowlink = std::min(v.lowlink, w.lowlink); } else if (w.chain_b == -1) { // on stack v.lowlink = std::min(v.lowlink, w.dfs_index); } }); if (v.lowlink == v.dfs_index) { auto component_start = scc_stack.end(); for(;;) { assert(component_start != scc_stack.begin()); --component_start; if (*component_start == p) break; } int chain_a = num_mines; int chain_b = 0; int trigger_mine = num_mines; for (auto it = component_start; it != scc_stack.end(); ++it) { int q = *it; if (q >= num_mines) { int mine_idx = q - num_mines; trigger_mine = std::min(trigger_mine, mine_idx); chain_a = std::min(chain_a, mines[mine_idx].range_a); chain_b = std::max(chain_b, mines[mine_idx].range_b); } for_each_successor(q, [&](int r) { if (vertices[r].chain_a != -1) { chain_a = std::min(chain_a, vertices[r].chain_a); chain_b = std::max(chain_b, vertices[r].chain_b); } }); } for (auto it = component_start; it != scc_stack.end(); ++it) { vertices[*it].chain_a = chain_a; vertices[*it].chain_b = chain_b; } if (trigger_mine != num_mines) { mines[trigger_mine].chain_a = chain_a; mines[trigger_mine].chain_b = chain_b; } scc_stack.erase(component_start, scc_stack.end()); } } void Minefield::calc_next_chain_reaches() { std::vector<std::pair<int, int>> by_chain_a; by_chain_a.reserve(num_mines); REP(i, num_mines) if (mines[i].chain_a != -1) { by_chain_a.emplace_back(mines[i].chain_a, i); } std::sort(by_chain_a.begin(), by_chain_a.end()); auto by_chain_a_it = by_chain_a.begin(); Minimizer reach_here(num_mines); next_chain_reaches.assign(num_mines, -1); REP(i, num_mines) if (mines[i].chain_a != -1) { while (by_chain_a_it != by_chain_a.end() && by_chain_a_it->first <= i) { reach_here.insert(by_chain_a_it->second); ++by_chain_a_it; } reach_here.erase(i); if (!reach_here.empty()) { next_chain_reaches[i] = reach_here.first(); } } } void Minefield::calc_suffix_possibilities() { suffix_possibilities.resize(num_mines+1); suffix_possibilities[num_mines] = 1; FORD(i,num_mines-1,0) { suffix_possibilities[i] = 0; // Explode first mine. if (mines[i].chain_b != -1) { suffix_possibilities[i] += suffix_possibilities[mines[i].chain_b]; } // Don't explode first mine. suffix_possibilities[i] += suffix_possibilities[i+1]; // Have to subtract those cases that reach here, i.e. those that explode `next`. int next = next_chain_reaches[i]; if (next != -1) { assert(mines[next].chain_b != -1); suffix_possibilities[i] -= suffix_possibilities[mines[next].chain_b]; } } } int main() { init_io(); Minefield minefield; const Mod res = minefield.calc_possibilities(); std::cout << res.get() << "\n"; } |