#include <bits/stdc++.h>
using namespace std;
typedef long long int LL;
const int MAXN = 2005;
const int INF = 1000000001;
const LL INFLL = 1000000000000000001LL;
const int DX[4] = {-1, 1, 0, 0};
const int DY[4] = {0, 0, 1, -1};
int n, m, q;
string M[MAXN];
int dist[MAXN][MAXN];
queue<pair<int,int>> Q;
inline bool inside(int x, int y) {
return (x >= 0) && (x < n) && (y >= 0) && (y < m);
}
int main() {
ios_base::sync_with_stdio(false); cin.tie(0);
cin >> n >> m >> q;
for (int i = 0; i < n; i++)
cin >> M[i];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = INF;
dist[0][0] = 0;
Q.push(make_pair(0, 0));
while (!Q.empty()) {
int x = Q.front().first, y = Q.front().second;
Q.pop();
for (int mv = 0; mv < 4; mv++) {
int xp = x + DX[mv], yp = y + DY[mv];
if (!inside(xp, yp)) continue;
if (M[xp][yp] == 'X') continue;
if (dist[xp][yp] != INF) continue;
dist[xp][yp] = dist[x][y] + 1;
Q.push(make_pair(xp, yp));
}
}
int opt_path_a = (n + m - 2) + (dist[n-1][m-1] - (n + m - 2)) / 2;
int opt_path_b = (dist[n-1][m-1] - (n + m - 2)) / 2;
LL best_cost = INFLL;
int count_best_cost = 0;
for (int i = 0; i < q; i++) {
LL a, b;
cin >> a >> b;
LL cost = opt_path_a * a + opt_path_b * b;
if (cost < best_cost) {
best_cost = cost;
count_best_cost = 0;
}
if (cost == best_cost) count_best_cost++;
}
cout << best_cost << " " << count_best_cost << "\n";
return 0;
}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include <bits/stdc++.h> using namespace std; typedef long long int LL; const int MAXN = 2005; const int INF = 1000000001; const LL INFLL = 1000000000000000001LL; const int DX[4] = {-1, 1, 0, 0}; const int DY[4] = {0, 0, 1, -1}; int n, m, q; string M[MAXN]; int dist[MAXN][MAXN]; queue<pair<int,int>> Q; inline bool inside(int x, int y) { return (x >= 0) && (x < n) && (y >= 0) && (y < m); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> m >> q; for (int i = 0; i < n; i++) cin >> M[i]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) dist[i][j] = INF; dist[0][0] = 0; Q.push(make_pair(0, 0)); while (!Q.empty()) { int x = Q.front().first, y = Q.front().second; Q.pop(); for (int mv = 0; mv < 4; mv++) { int xp = x + DX[mv], yp = y + DY[mv]; if (!inside(xp, yp)) continue; if (M[xp][yp] == 'X') continue; if (dist[xp][yp] != INF) continue; dist[xp][yp] = dist[x][y] + 1; Q.push(make_pair(xp, yp)); } } int opt_path_a = (n + m - 2) + (dist[n-1][m-1] - (n + m - 2)) / 2; int opt_path_b = (dist[n-1][m-1] - (n + m - 2)) / 2; LL best_cost = INFLL; int count_best_cost = 0; for (int i = 0; i < q; i++) { LL a, b; cin >> a >> b; LL cost = opt_path_a * a + opt_path_b * b; if (cost < best_cost) { best_cost = cost; count_best_cost = 0; } if (cost == best_cost) count_best_cost++; } cout << best_cost << " " << count_best_cost << "\n"; return 0; } |
English