//42 #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; typedef uint32_t ul; typedef int32_t l; typedef uint64_t ull; typedef int64_t ll; template <typename T> using statistics_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; const l INF = 1000000000 + 9; const ll MOD = 123456789; const l PRIME = 200003; const ll L_INF = 1000000000000000000LL + 7; const double EPS = 1e-5; #define FOR(x, y, z) for (l z = x; z < y; z++) #define FORE(x, y, z) for (l z = x; z <= y; z++) #define FORD(x, y, z) for (l z = x; z > y; z--) #define FORDE(x, y, z) for (l z = x; z >= y; z--) #define REP(x, y) for (l y = 0; y < x; y++) #define ALL(...) (__VA_ARGS__).begin(), (__VA_ARGS__).end() #define PF push_front #define POF pop_front #define PB push_back #define POB pop_back #define MP make_pair #define FS first #define SC second const l MAXN = 2005; ll n, m, k; char mapa[MAXN][MAXN]; ll dist[MAXN][MAXN]; bool visited[MAXN][MAXN]; map<ll, ll> M; l X[4] = {1, 0, -1, 0}; l Y[4] = {0, 1, 0, -1}; l cost[4] = {0, 0, 1, 1}; bool isInside(l x, l y) { return 1 <= x && x <= n && 1 <= y && y <= m; } void bfs() { deque<pair<l, l> > Q; Q.PB({1, 1}); dist[1][1] = 0; while(!Q.empty()) { auto v = Q.front(); Q.POF(); if(visited[v.FS][v.SC]) continue; visited[v.FS][v.SC] = true; REP(4, k) { l n_x{v.FS+X[k]}, n_y{v.SC+Y[k]}; if(isInside(n_x, n_y) && mapa[n_x][n_y] != 'X' && dist[n_x][n_y] > dist[v.FS][v.SC] + cost[k]) { dist[n_x][n_y] = dist[v.FS][v.SC] + cost[k]; if(cost[k] == 0) Q.PF({n_x, n_y}); else Q.PB({n_x, n_y}); } } } } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n >> m >> k; FORE(1, n, i) FORE(1, m, j) { cin >> mapa[i][j]; dist[i][j] = INF; } bfs(); REP(k, i) { ll a, b; cin >> a >> b; M[a*(n+m-2) + dist[n][m]*1LL*(a+b)]++; } cout << M.begin()->FS << " " << M.begin()->SC << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | //42 #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; typedef uint32_t ul; typedef int32_t l; typedef uint64_t ull; typedef int64_t ll; template <typename T> using statistics_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; const l INF = 1000000000 + 9; const ll MOD = 123456789; const l PRIME = 200003; const ll L_INF = 1000000000000000000LL + 7; const double EPS = 1e-5; #define FOR(x, y, z) for (l z = x; z < y; z++) #define FORE(x, y, z) for (l z = x; z <= y; z++) #define FORD(x, y, z) for (l z = x; z > y; z--) #define FORDE(x, y, z) for (l z = x; z >= y; z--) #define REP(x, y) for (l y = 0; y < x; y++) #define ALL(...) (__VA_ARGS__).begin(), (__VA_ARGS__).end() #define PF push_front #define POF pop_front #define PB push_back #define POB pop_back #define MP make_pair #define FS first #define SC second const l MAXN = 2005; ll n, m, k; char mapa[MAXN][MAXN]; ll dist[MAXN][MAXN]; bool visited[MAXN][MAXN]; map<ll, ll> M; l X[4] = {1, 0, -1, 0}; l Y[4] = {0, 1, 0, -1}; l cost[4] = {0, 0, 1, 1}; bool isInside(l x, l y) { return 1 <= x && x <= n && 1 <= y && y <= m; } void bfs() { deque<pair<l, l> > Q; Q.PB({1, 1}); dist[1][1] = 0; while(!Q.empty()) { auto v = Q.front(); Q.POF(); if(visited[v.FS][v.SC]) continue; visited[v.FS][v.SC] = true; REP(4, k) { l n_x{v.FS+X[k]}, n_y{v.SC+Y[k]}; if(isInside(n_x, n_y) && mapa[n_x][n_y] != 'X' && dist[n_x][n_y] > dist[v.FS][v.SC] + cost[k]) { dist[n_x][n_y] = dist[v.FS][v.SC] + cost[k]; if(cost[k] == 0) Q.PF({n_x, n_y}); else Q.PB({n_x, n_y}); } } } } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n >> m >> k; FORE(1, n, i) FORE(1, m, j) { cin >> mapa[i][j]; dist[i][j] = INF; } bfs(); REP(k, i) { ll a, b; cin >> a >> b; M[a*(n+m-2) + dist[n][m]*1LL*(a+b)]++; } cout << M.begin()->FS << " " << M.begin()->SC << "\n"; } |