#include <cstdio> #include <cstring> #include <cmath> #include <cassert> #include <iostream> #include <algorithm> #include <iterator> #include <string> #include <vector> #include <queue> #include <bitset> #include <utility> #include <stack> using namespace std; typedef long long LL; typedef pair<int,int> PII; typedef vector<int> VI; #define MP make_pair #define FOR(v,p,k) for(int v=(p);v<=(k);++v) #define FORD(v,p,k) for(int v=(p);v>=(k);--v) #define REP(i,n) for(int i=0;i<(n);++i) #define VAR(v,i) __typeof(i) v=(i) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define PB push_back #define ST first #define ND second #define SIZE(x) (int)x.size() #define ALL(c) c.begin(),c.end() #define ODD(x) ((x)%2) #define EVEN(x) (!(ODD(x))) int mat[2009][2009]; bool visited[2009][2009]; char buffer[2009]; //copied from: https://www.geeksforgeeks.org/shortest-path-in-a-binary-maze/ // C++ program to find the shortest path between // a given source cell to a destination cell. using namespace std; int ROW; int COL; //To store matrix cell cordinates struct Point { int x; int y; }; // A Data Structure for queue used in BFS struct queueNode { Point pt; // The cordinates of a cell int dist; // cell's distance of from the source }; // check whether given cell (row, col) is a valid // cell or not. bool isValid(int row, int col) { // return true if row number and column number // is in range return (row >= 0) && (row < ROW) && (col >= 0) && (col < COL); } // These arrays are used to get row and column // numbers of 4 neighbours of a given cell int rowNum[] = {-1, 0, 0, 1}; int colNum[] = {0, -1, 1, 0}; // function to find the shortest path between // a given source cell to a destination cell. int BFS(Point src, Point dest) { // check source and destination cell // of the matrix have value 1 if (!mat[src.x][src.y] || !mat[dest.x][dest.y]) return -1; // Mark the source cell as visited visited[src.x][src.y] = true; // Create a queue for BFS queue<queueNode> q; // Distance of source cell is 0 queueNode s = {src, 0}; q.push(s); // Enqueue source cell // Do a BFS starting from source cell while (!q.empty()) { queueNode curr = q.front(); Point pt = curr.pt; // If we have reached the destination cell, // we are done if (pt.x == dest.x && pt.y == dest.y) return curr.dist; // Otherwise dequeue the front // cell in the queue // and enqueue its adjacent cells q.pop(); for (int i = 0; i < 4; i++) { int row = pt.x + rowNum[i]; int col = pt.y + colNum[i]; // if adjacent cell is valid, has path and // not visited yet, enqueue it. if (isValid(row, col) && mat[row][col] && !visited[row][col]) { // mark cell as visited and enqueue it visited[row][col] = true; queueNode Adjcell = { {row, col}, curr.dist + 1 }; q.push(Adjcell); } } } // Return -1 if destination cannot be reached return -1; } int main() { int n, m, k; scanf("%d%d%d\n", &n, &m, &k); ROW=n; COL=m; REP(row, n) { scanf("%s", buffer); REP(col, m) { mat[row][col] = buffer[col] == '.'; } } Point source = {0, 0}; Point dest = {n-1, m-1}; int dist = BFS(source, dest); LL best = 1000000009LL * 2009LL * 2009LL; int best_cnt = 0; REP(i, k) { LL a, b; scanf("%lld%lld", &a, &b); LL cost = a * (m + n - 2) + (a+b) * ((dist - m - n + 2) /2); if (cost == best) { best_cnt++; } if (cost < best) { best_cnt = 1; best = cost; } } printf("%lld %d\n", best, best_cnt); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | #include <cstdio> #include <cstring> #include <cmath> #include <cassert> #include <iostream> #include <algorithm> #include <iterator> #include <string> #include <vector> #include <queue> #include <bitset> #include <utility> #include <stack> using namespace std; typedef long long LL; typedef pair<int,int> PII; typedef vector<int> VI; #define MP make_pair #define FOR(v,p,k) for(int v=(p);v<=(k);++v) #define FORD(v,p,k) for(int v=(p);v>=(k);--v) #define REP(i,n) for(int i=0;i<(n);++i) #define VAR(v,i) __typeof(i) v=(i) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define PB push_back #define ST first #define ND second #define SIZE(x) (int)x.size() #define ALL(c) c.begin(),c.end() #define ODD(x) ((x)%2) #define EVEN(x) (!(ODD(x))) int mat[2009][2009]; bool visited[2009][2009]; char buffer[2009]; //copied from: https://www.geeksforgeeks.org/shortest-path-in-a-binary-maze/ // C++ program to find the shortest path between // a given source cell to a destination cell. using namespace std; int ROW; int COL; //To store matrix cell cordinates struct Point { int x; int y; }; // A Data Structure for queue used in BFS struct queueNode { Point pt; // The cordinates of a cell int dist; // cell's distance of from the source }; // check whether given cell (row, col) is a valid // cell or not. bool isValid(int row, int col) { // return true if row number and column number // is in range return (row >= 0) && (row < ROW) && (col >= 0) && (col < COL); } // These arrays are used to get row and column // numbers of 4 neighbours of a given cell int rowNum[] = {-1, 0, 0, 1}; int colNum[] = {0, -1, 1, 0}; // function to find the shortest path between // a given source cell to a destination cell. int BFS(Point src, Point dest) { // check source and destination cell // of the matrix have value 1 if (!mat[src.x][src.y] || !mat[dest.x][dest.y]) return -1; // Mark the source cell as visited visited[src.x][src.y] = true; // Create a queue for BFS queue<queueNode> q; // Distance of source cell is 0 queueNode s = {src, 0}; q.push(s); // Enqueue source cell // Do a BFS starting from source cell while (!q.empty()) { queueNode curr = q.front(); Point pt = curr.pt; // If we have reached the destination cell, // we are done if (pt.x == dest.x && pt.y == dest.y) return curr.dist; // Otherwise dequeue the front // cell in the queue // and enqueue its adjacent cells q.pop(); for (int i = 0; i < 4; i++) { int row = pt.x + rowNum[i]; int col = pt.y + colNum[i]; // if adjacent cell is valid, has path and // not visited yet, enqueue it. if (isValid(row, col) && mat[row][col] && !visited[row][col]) { // mark cell as visited and enqueue it visited[row][col] = true; queueNode Adjcell = { {row, col}, curr.dist + 1 }; q.push(Adjcell); } } } // Return -1 if destination cannot be reached return -1; } int main() { int n, m, k; scanf("%d%d%d\n", &n, &m, &k); ROW=n; COL=m; REP(row, n) { scanf("%s", buffer); REP(col, m) { mat[row][col] = buffer[col] == '.'; } } Point source = {0, 0}; Point dest = {n-1, m-1}; int dist = BFS(source, dest); LL best = 1000000009LL * 2009LL * 2009LL; int best_cnt = 0; REP(i, k) { LL a, b; scanf("%lld%lld", &a, &b); LL cost = a * (m + n - 2) + (a+b) * ((dist - m - n + 2) /2); if (cost == best) { best_cnt++; } if (cost < best) { best_cnt = 1; best = cost; } } printf("%lld %d\n", best, best_cnt); return 0; } |