1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#define _CRT_SECURE_NO_WARNINGS
#define ONLINE_JUDGE
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <limits>
#include <algorithm>
#include <set>
using namespace std;

#define REP(i,n) for(int _n=(n), i=0;i<_n;++i)
typedef long long LL;

typedef vector<string> Map;

struct Traveler
{
    Traveler(int upTime, int downTime)
    {
        this->upTime = upTime;
        this->downTime = downTime;
    }
    int upTime;
    int downTime;
};

struct Input
{
    vector<Traveler> travelers;
    Map map;
};

Input readInput()
{
    int rows, cols, travelers, upTime, downTime;
    scanf("%d %d %d", &rows, &cols, &travelers);
    Input result;
    char buffer[2001];

    REP(i, rows)
    {
        scanf("%s", &buffer);
        result.map.push_back(buffer);
    }

    REP(i, travelers)
    {
        scanf("%d %d", &upTime, &downTime);
        result.travelers.push_back(Traveler(upTime, downTime));
    }

    return result;
}


struct Output
{
    LL minimalTime;
    int travelersWithMinimalTime;
};

typedef pair<int, int> Vertex; // row, col

class Solver
{
public:
    Output solve(Input input)
    {
        this->input = input;
        vector<Vertex> shortestPath = getShortestPath();

        LL ups = 0, downs = 0;
        for (int i = 1; i < shortestPath.size(); ++i)
        {
            const Vertex& currentVertex = shortestPath[i];
            const Vertex& prevVertex = shortestPath[i - 1];

            if (currentVertex.first == prevVertex.first + 1 || currentVertex.second == prevVertex.second + 1)
                ++ups;
            else
                ++downs;
        }

        Output result;
        result.minimalTime = numeric_limits<LL>::max();
        result.travelersWithMinimalTime = 0;

        for (auto traveler : input.travelers)
            result.minimalTime = min(result.minimalTime, traveler.upTime * ups + traveler.downTime * downs);

        for (auto traveler : input.travelers)
        {
            if (result.minimalTime == traveler.upTime * ups + traveler.downTime * downs)
                ++result.travelersWithMinimalTime;
        }

        return result;
    }
private:
    vector<Vertex> getShortestPath()
    {
        const int Infinity = 1e9;
        vector<vector<int>> shortestPath(input.map.size(), vector<int>(input.map[0].size(), Infinity));
        vector<vector<Vertex>> previousVertex(input.map.size(), vector<Vertex>(input.map[0].size()));
        typedef pair<int, Vertex> DistanceAndVertex;
        set<DistanceAndVertex> Q;
        shortestPath[0][0] = 0;
        Q.insert(DistanceAndVertex(0, Vertex(0, 0)));

        const int deltaRow[] = {-1, +0, +1, +0};
        const int deltaCol[] = { +0, +1, +0, -1 };

        while (!Q.empty())
        {
            const DistanceAndVertex top = *(Q.begin());
            const Vertex vertex = top.second;
            const int distance = top.first;
            Q.erase(Q.begin());

            REP(move, 4)
            {
                const int newRow = vertex.first + deltaRow[move];
                const int newCol = vertex.second + deltaCol[move];

                if (newRow >= 0 && newRow < input.map.size() && newCol >= 0 && newCol < input.map[0].size()
                    && input.map[newRow][newCol] == '.')
                {
                    if (shortestPath[newRow][newCol] > shortestPath[vertex.first][vertex.second] + 1)
                    {
                        if (shortestPath[newRow][newCol] != Infinity)
                            Q.erase(Q.find(DistanceAndVertex(shortestPath[newRow][newCol], Vertex(newRow, newCol))));

                        shortestPath[newRow][newCol] = shortestPath[vertex.first][vertex.second] + 1;
                        previousVertex[newRow][newCol] = vertex;
                        Q.insert(DistanceAndVertex(shortestPath[newRow][newCol], Vertex(newRow, newCol)));
                    }
                }
            }
        }

        vector<Vertex> pathToPeek;
        auto currentVertex = Vertex(input.map.size() - 1, input.map[0].size() - 1);
        auto beginning = Vertex(0, 0);
        while (currentVertex != beginning)
        {
            pathToPeek.push_back(currentVertex);
            currentVertex = previousVertex[currentVertex.first][currentVertex.second];
        }
        pathToPeek.push_back(beginning);

        reverse(pathToPeek.begin(), pathToPeek.end());
        return pathToPeek;
    }
    Input input;
};


int main()
{
    auto input = readInput();
    Solver solver;
    auto output = solver.solve(input);

    printf("%lld %d\n", output.minimalTime, output.travelersWithMinimalTime);

#ifndef ONLINE_JUDGE
    system("pause");
#endif
    return 0;
}