#include <bits/stdc++.h> #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define DEBUG(x) std::cerr << #x << " = " << (x) << std::endl; typedef long long LL; typedef unsigned long long ULL; void init_io() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: constexpr Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(ULL(v) * ULL(b.v) % MOD); } void operator*=(Modulo b) { *this = *this * b; } friend inline Modulo operator+(unsigned a, Modulo b) { return Modulo(a) + b; } friend inline Modulo operator-(unsigned a, Modulo b) { return Modulo(a) - b; } friend inline Modulo operator*(unsigned a, Modulo b) { return Modulo(a) * b; } static Modulo from_int(int x) { unsigned xx = x; if (x<0) xx += MOD; return Modulo(xx); } private: unsigned v; }; using Mod = Modulo<2 * 1'000'000'007>; // Tree depth. One lower than in problem statement. int n; int num_queries; // k < n // a[k] = degree at depth k,0 std::vector<int> a; // 0 <= k <= n // sum_ones[k] = sum(1) for subtree at depth k = size of subtree std::vector<Mod> sum_ones; // 0 <= k <= n // sum(depth) for subtree at depth k std::vector<Mod> sum_depth; // 0 <= k <= n+1: sum(i<k) sum_ones[i] std::vector<Mod> sum_ones_prefix_sum; // 0 <= k <= n: number of consecutive odd entries in a[k], a[k+1], ... std::vector<int> consecutive_odd; void read_tree() { std::cin >> n >> num_queries; --n; a.resize(n); REP(i, n) std::cin >> a[i]; } void calc_sum_ones() { sum_ones.resize(n+1); sum_ones[n] = 1; FORD(i, n-1, 0) sum_ones[i] = a[i] * sum_ones[i+1] + 1; } void calc_sum_depth() { sum_depth.resize(n+1); sum_depth[n] = n; FORD(i, n-1, 0) sum_depth[i] = a[i] * sum_depth[i+1] + i; } void calc_sum_ones_prefix_sum() { sum_ones_prefix_sum.resize(n+2); sum_ones_prefix_sum[0] = 0; FOR(i, 0, n) sum_ones_prefix_sum[i+1] = sum_ones_prefix_sum[i] + sum_ones[i]; } void calc_consecutive_odd() { consecutive_odd.resize(n+1); consecutive_odd[n] = 0; FORD(i, n-1, 0) { if (a[i] & 1) { consecutive_odd[i] = consecutive_odd[i+1] + 1; } else { consecutive_odd[i] = 0; } } } void process_tree() { calc_sum_ones(); calc_sum_depth(); calc_sum_ones_prefix_sum(); calc_consecutive_odd(); } Mod sum_distances(int A) { return (A+2) * sum_ones[0] + sum_depth[0] - 2 * sum_ones_prefix_sum[A+1]; } Mod calc_bonuses2_brute(int A, int B, int L) { static std::vector<char> bonus; // First do flips. bonus.assign(2*n+2, 0); REP(i, L) { int max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; bonus[n - i] ^= 1; bonus[n - i +1+max] ^= 1; } { int i=L; int max; if(B==L && A > L) { max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; } else { max = consecutive_odd[i]; } bonus[n-i] ^= 1; bonus[n - i + 1+max] ^= 1; } // L < i < B: no bonuses if (B > L) { int i=B; if (A > B) { int max = 1 + consecutive_odd[i+1]; bonus[n-L + 1] ^= 1; bonus[n-L + 1+max] ^= 1; } else { // i=A=B>L: no bonuses } } FOR(i,B+1,A-1) { int max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; bonus[n-L] ^= 1; bonus[n-L + 1+max] ^= 1; } { int i=A; if (A>B) { int max = consecutive_odd[i]; bonus[n-L] ^= 1; bonus[n-L + 1+max] ^= 1; } } char on = 0; for (char &b : bonus) { on ^= b; b = on; } assert(!on); int sign = 1; int res = 0; FORD(i,n,-n) { if (bonus[n+i]) { res += sign * i; sign = -sign; } } return Mod::from_int(res); } // Each bonus is between -n and n. depth(X) - LCA(A,X) - LCA(B,X) Mod calc_bonuses2(int A, int B, int L) { if (A<B) std::swap(A,B); return calc_bonuses2_brute(A, B, L); } Mod calc_bonuses(int A, int B, int L) { Mod res = 2 * calc_bonuses2(A, B, L); // bonus = A+B + 2 * bonus2 // if there are odd number of moves, we get an extra A+B if (sum_ones[0].get() % 2u != 0) res += A + B; return res; } Mod calc_double_game_score(int A, int B, int L) { const Mod sum_distances_A = sum_distances(A); const Mod sum_distances_B = sum_distances(B); const Mod bonuses = calc_bonuses(A, B, L); return sum_distances_A - sum_distances_B + bonuses; } void read_and_process_queries() { REP(i, num_queries) { int A, B, L; std::cin >> A >> B >> L; --A; --B; --L; const unsigned double_game_score_remainder = calc_double_game_score(A, B, L).get(); assert(double_game_score_remainder % 2u == 0); std::cout << (double_game_score_remainder / 2u) << "\n"; } } int main() { init_io(); read_tree(); process_tree(); read_and_process_queries(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | #include <bits/stdc++.h> #define REP(i,n) for(int _n=(n), i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define DEBUG(x) std::cerr << #x << " = " << (x) << std::endl; typedef long long LL; typedef unsigned long long ULL; void init_io() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<unsigned MOD> class Modulo { public: constexpr Modulo(unsigned x=0):v(x) {} unsigned get() const { return v; } Modulo operator+(Modulo b) const { unsigned res = v+b.v; if (res >= MOD) res -= MOD; return res; } void operator+=(Modulo b) { *this = *this + b; } Modulo operator-(Modulo b) const { return *this + Modulo(MOD-b.v); } void operator-=(Modulo b) { *this = *this - b; } Modulo operator*(Modulo b) const { return Modulo(ULL(v) * ULL(b.v) % MOD); } void operator*=(Modulo b) { *this = *this * b; } friend inline Modulo operator+(unsigned a, Modulo b) { return Modulo(a) + b; } friend inline Modulo operator-(unsigned a, Modulo b) { return Modulo(a) - b; } friend inline Modulo operator*(unsigned a, Modulo b) { return Modulo(a) * b; } static Modulo from_int(int x) { unsigned xx = x; if (x<0) xx += MOD; return Modulo(xx); } private: unsigned v; }; using Mod = Modulo<2 * 1'000'000'007>; // Tree depth. One lower than in problem statement. int n; int num_queries; // k < n // a[k] = degree at depth k,0 std::vector<int> a; // 0 <= k <= n // sum_ones[k] = sum(1) for subtree at depth k = size of subtree std::vector<Mod> sum_ones; // 0 <= k <= n // sum(depth) for subtree at depth k std::vector<Mod> sum_depth; // 0 <= k <= n+1: sum(i<k) sum_ones[i] std::vector<Mod> sum_ones_prefix_sum; // 0 <= k <= n: number of consecutive odd entries in a[k], a[k+1], ... std::vector<int> consecutive_odd; void read_tree() { std::cin >> n >> num_queries; --n; a.resize(n); REP(i, n) std::cin >> a[i]; } void calc_sum_ones() { sum_ones.resize(n+1); sum_ones[n] = 1; FORD(i, n-1, 0) sum_ones[i] = a[i] * sum_ones[i+1] + 1; } void calc_sum_depth() { sum_depth.resize(n+1); sum_depth[n] = n; FORD(i, n-1, 0) sum_depth[i] = a[i] * sum_depth[i+1] + i; } void calc_sum_ones_prefix_sum() { sum_ones_prefix_sum.resize(n+2); sum_ones_prefix_sum[0] = 0; FOR(i, 0, n) sum_ones_prefix_sum[i+1] = sum_ones_prefix_sum[i] + sum_ones[i]; } void calc_consecutive_odd() { consecutive_odd.resize(n+1); consecutive_odd[n] = 0; FORD(i, n-1, 0) { if (a[i] & 1) { consecutive_odd[i] = consecutive_odd[i+1] + 1; } else { consecutive_odd[i] = 0; } } } void process_tree() { calc_sum_ones(); calc_sum_depth(); calc_sum_ones_prefix_sum(); calc_consecutive_odd(); } Mod sum_distances(int A) { return (A+2) * sum_ones[0] + sum_depth[0] - 2 * sum_ones_prefix_sum[A+1]; } Mod calc_bonuses2_brute(int A, int B, int L) { static std::vector<char> bonus; // First do flips. bonus.assign(2*n+2, 0); REP(i, L) { int max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; bonus[n - i] ^= 1; bonus[n - i +1+max] ^= 1; } { int i=L; int max; if(B==L && A > L) { max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; } else { max = consecutive_odd[i]; } bonus[n-i] ^= 1; bonus[n - i + 1+max] ^= 1; } // L < i < B: no bonuses if (B > L) { int i=B; if (A > B) { int max = 1 + consecutive_odd[i+1]; bonus[n-L + 1] ^= 1; bonus[n-L + 1+max] ^= 1; } else { // i=A=B>L: no bonuses } } FOR(i,B+1,A-1) { int max = (a[i]&1) ? 0 : 1 + consecutive_odd[i+1]; bonus[n-L] ^= 1; bonus[n-L + 1+max] ^= 1; } { int i=A; if (A>B) { int max = consecutive_odd[i]; bonus[n-L] ^= 1; bonus[n-L + 1+max] ^= 1; } } char on = 0; for (char &b : bonus) { on ^= b; b = on; } assert(!on); int sign = 1; int res = 0; FORD(i,n,-n) { if (bonus[n+i]) { res += sign * i; sign = -sign; } } return Mod::from_int(res); } // Each bonus is between -n and n. depth(X) - LCA(A,X) - LCA(B,X) Mod calc_bonuses2(int A, int B, int L) { if (A<B) std::swap(A,B); return calc_bonuses2_brute(A, B, L); } Mod calc_bonuses(int A, int B, int L) { Mod res = 2 * calc_bonuses2(A, B, L); // bonus = A+B + 2 * bonus2 // if there are odd number of moves, we get an extra A+B if (sum_ones[0].get() % 2u != 0) res += A + B; return res; } Mod calc_double_game_score(int A, int B, int L) { const Mod sum_distances_A = sum_distances(A); const Mod sum_distances_B = sum_distances(B); const Mod bonuses = calc_bonuses(A, B, L); return sum_distances_A - sum_distances_B + bonuses; } void read_and_process_queries() { REP(i, num_queries) { int A, B, L; std::cin >> A >> B >> L; --A; --B; --L; const unsigned double_game_score_remainder = calc_double_game_score(A, B, L).get(); assert(double_game_score_remainder % 2u == 0); std::cout << (double_game_score_remainder / 2u) << "\n"; } } int main() { init_io(); read_tree(); process_tree(); read_and_process_queries(); } |