1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include <bits/stdc++.h>

using namespace std;

#define JOIN_(X, Y) X##Y
#define JOIN(X, Y) JOIN_(X, Y)
#define TMP JOIN(tmp, __LINE__)
#define PB push_back
#define SZ(x) int((x).size())
#define REP(i, n) for (int i = 0, TMP = (n); i < TMP; ++i)
#define FOR(i, a, b) for (int i = (a), TMP = (b); i <= TMP; ++i)
#define FORD(i, a, b) for (int i = (a), TMP = (b); i >= TMP; --i)

#ifdef DEBUG
#define DEB(x) (cerr << x)
#else
#define DEB(x)
#endif

typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> pii;

const int INF = 1e9 + 9;

// START PushRelabelMaxFlow
#define FORE(i, t) for (auto i = t.begin(); i != t.end(); ++i)

struct Edge {
    int to, capacity, flow;
    Edge *rev;

    Edge(int _to, int _capacity, int _flow = 0) : to(_to), capacity(_capacity), flow(_flow) {}
};

struct Vertex {
    int excess, height;
    list<Edge> adj;
    list<Edge>::iterator cur;

    Vertex() : excess(0), height(0), cur(adj.begin()) {}
};

struct PushRelabelMaxFlow {
    int number_of_vertices, source, sink;
    vector<Vertex> V;

    PushRelabelMaxFlow(int _number_of_vertices, int _source, int _sink)
        : number_of_vertices(_number_of_vertices), source(_source), sink(_sink),
          V(_number_of_vertices) {
        V[source].height = number_of_vertices;
    }

    void add_edge(int from, int to, int forward_capacity = 0, int backward_capacity = 0) {
        V[from].adj.push_front(Edge(to, forward_capacity));
        V[to].adj.push_front(Edge(from, backward_capacity));
        V[from].adj.front().rev = &V[to].adj.front();
        V[to].adj.front().rev = &V[from].adj.front();
    }

    inline bool inside(int x) { return x != source && x != sink; }

    void push(int x, Edge &e) {
        int w = min(V[x].excess, e.capacity - e.flow);
        V[x].excess -= w;
        V[e.to].excess += w;
        e.flow += w;
        e.rev->flow = -e.flow;
    }

    void lift(int x) {
        int mn = INF;
        FORE(it, V[x].adj) {
            if (it->capacity > it->flow) {
                mn = min(mn, V[it->to].height);
            }
        }
        V[x].height = 1 + mn;
    }

    void discharge(int x) {
        while (V[x].excess > 0) {
            list<Edge>::iterator &y = V[x].cur;
            if (y == V[x].adj.end()) {
                lift(x);
                y = V[x].adj.begin();
            } else if ((y->capacity > y->flow) && (V[x].height == V[y->to].height + 1)) {
                push(x, *y);
            } else {
                ++y;
            }
        }
    }

    int compute_max_flow() {
        for (auto &it : V[source].adj) {
            it.flow = it.capacity;
            it.rev->flow = -it.capacity;
            V[it.to].excess += it.capacity;
            V[source].excess -= it.capacity;
        }
        list<int> l;
        REP(i, number_of_vertices) {
            if (inside(i)) {
                l.PB(i);
            }
        }
        FORE(it, l) {
            int old_height = V[*it].height;
            discharge(*it);
            if (V[*it].height > old_height) {
                int x = *it;
                l.erase(it);
                l.push_front(x);
                it = l.begin();
            }
        }
        return V[sink].excess;
    }
};

// END PushRelabelMaxFlow

int get_vertex(int x, int y, int n) { return (x - 1) * n + (y - 1); }

void build_graph(PushRelabelMaxFlow &graph, const vector<vector<bool>> &b, int n) {
    int source = n * n;
    int sink = n * n + 1;
    FOR(x, 1, n) {
        FOR(y, 1, n) {
            int from = get_vertex(x, y, n);
            if (b[x][y]) {
                graph.add_edge(source, from, 1);
                FOR(nx, 1, n) {
                    if (nx != x and not b[nx][y]) {
                        int to = get_vertex(nx, y, n);
                        graph.add_edge(from, to, 1);
                    }
                }
                FOR(ny, 1, n) {
                    if (ny != y and not b[x][ny]) {
                        int to = get_vertex(x, ny, n);
                        graph.add_edge(from, to, 1);
                    }
                }
            } else {
                graph.add_edge(from, sink, 1);
            }
        }
    }
}

void inline one() {
    int n, m, q;
    cin >> n >> m >> q;
    vector<vector<bool>> b(n + 1, vector<bool>(n + 1));
    REP(i, m) {
        int x1, y1, x2, y2;
        cin >> x1 >> y1 >> x2 >> y2;
        FOR(x, x1, x2) {
            FOR(y, y1, y2) { b[x][y] = not b[x][y]; }
        }
    }
    int v = n * n + 2;
    int source = n * n;
    int sink = n * n + 1;

    REP(i, q + 1) {
        auto graph = PushRelabelMaxFlow(v, source, sink);
        build_graph(graph, b, n);
        int result = graph.compute_max_flow();
        cout << result << "\n";
        if (i < q) {
            int x, y;
            cin >> x >> y;
            b[x][y] = not b[x][y];
        }
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    // int z; cin >> z; while(z--)
    one();
}