#include <bits/stdc++.h> using namespace std; struct Change { int x1, y1, x2, y2; }; struct Query { int x, y; }; struct TestCase { int side; int change_count; int query_count; vector<Change> changes; vector<Query> queries; }; TestCase read_test_case(); void solve_test_case(const TestCase&); int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve_test_case(read_test_case()); } TestCase read_test_case() { TestCase test_case; cin >> test_case.side >> test_case.change_count >> test_case.query_count; test_case.changes.resize(test_case.change_count); test_case.queries.resize(test_case.query_count); for (auto& c : test_case.changes) cin >> c.x1 >> c.y1 >> c.x2 >> c.y2; for (auto& q : test_case.queries) cin >> q.x >> q.y; return test_case; } list<pair<int, int>> base_ranges(Change c) { return { {c.x1, c.y1}, {c.x2 + 1, c.y1}, {c.x1, c.y2 + 1}, {c.x2 + 1, c.y2 + 1}, }; } struct Position { int x, y; }; struct Node { struct Edge { using Key = deque<Edge>::iterator; Key reverse; int neighbor; bool bipartite; }; int index; deque<Edge> edges; Edge::Key add(int neighbor, bool bipartite) { Edge e; e.neighbor = neighbor; e.bipartite = bipartite; return edges.insert(edges.end(), e); } void swap() { for (auto& e : edges) { e.reverse->bipartite = !e.bipartite; e.bipartite = !e.bipartite; } } }; struct Matching { vector<int> node_match; int size = 0; Matching(size_t node_count) : node_match(node_count, -1) {} bool is_node_matched(int node) const { return node_match[node] != -1; } bool is_edge_match(int from, int to) const { return node_match[from] == to; } void match(int node1, int node2) { node_match[node1] = node2; node_match[node2] = node1; } void unmatch(int node) { if (node_match[node] != -1) { node_match[node_match[node]] = -1; size--; } node_match[node] = -1; } }; using Graph = vector<Node>; Matching find_maximum_matching(const Graph& graph); void augment_matching(const Graph& graph, Matching& matching); void solve_test_case(const TestCase& test_case) { vector<vector<bool>> data; data.resize(test_case.side + 2); for (auto& v : data) v.resize(test_case.side + 2); for (auto c : test_case.changes) for (auto [x, y] : base_ranges(c)) { data[x][y] = !data[x][y]; } // Calculate result state after first operations vector<vector<bool>> state; state.resize(test_case.side + 1); for (auto& v : state) v.resize(test_case.side + 1, false); for (int x = 1; x <= test_case.side; x++) for (int y = 1; y <= test_case.side; y++) state[x][y] = state[x - 1][y] ^ state[x][y - 1] ^ state[x - 1][y - 1] ^ data[x][y]; // Build graph Graph graph(test_case.side * test_case.side); auto get_index = [](int x, int y, int side) { return (y - 1) * side + (x - 1); }; auto connect = [&](int a, int b, bool bipartite) { auto k1 = graph[a].add(b, bipartite); auto k2 = graph[b].add(a, bipartite); k1->reverse = k2; k2->reverse = k1; }; for (int x = 1; x <= test_case.side; x++) for (int y = 1; y <= test_case.side; y++) { int index = get_index(x, y, test_case.side); for (int i = 1; i <= test_case.side; i++) { if (i == y) continue; int ind = get_index(x, i, test_case.side); connect(index, ind, state[x][y] != state[x][i]); } for (int i = 1; i <= test_case.side; i++) { if (i == x) continue; int ind = get_index(i, y, test_case.side); connect(index, ind, state[x][y] != state[i][y]); } } Matching matching = find_maximum_matching(graph); cout << matching.size << "\n"; // Perform queries for (auto q : test_case.queries) { state[q.x][q.y] = !state[q.x][q.y]; int index = get_index(q.x, q.y, test_case.side); graph[index].swap(); matching.unmatch(index); augment_matching(graph, matching); cout << matching.size << "\n"; } } using Path = list<int>; list<Path> find_augmenting_paths(const Graph& graph, const Matching& matching); void apply_augmenting_path(const Path& path, Matching& matching); Matching find_maximum_matching(const Graph& graph) { Matching matching(graph.size()); augment_matching(graph, matching); return matching; } void augment_matching(const Graph& graph, Matching& matching) { list<Path> paths; do { paths = find_augmenting_paths(graph, matching); for (const Path& path : paths) apply_augmenting_path(path, matching); } while (paths.size() > 0); } void apply_augmenting_path(const Path& path, Matching& matching) { int previous; bool match = false; for (auto current : path) { if (match) matching.match(previous, current); match = !match; previous = current; } matching.size++; } using Visited = vector<bool>; Path find_path_from(int source, const Graph&, const Matching&, Visited&); list<Path> find_augmenting_paths(const Graph& graph, const Matching& matching) { list<Path> paths; Visited visited(graph.size(), false); for (size_t node = 0; node < graph.size(); node++) { if (visited[node] || matching.is_node_matched(node)) continue; auto path = find_path_from(node, graph, matching, visited); if (path.size() > 0) paths.push_back(path); } return paths; } Path find_path_from( int source, const Graph& graph, const Matching& matching, Visited& visited) { Path current_path; current_path.push_back(source); visited[source] = true; stack<int> last_neighbor; last_neighbor.push(-1); while (!current_path.empty()) { int current = current_path.back(); if (current_path.size() % 2 == 0 && !matching.is_node_matched(current)) return current_path; for (size_t i = last_neighbor.top() + 1; i < graph[current].edges.size(); i++) { int neighbor = graph[current].edges[i].neighbor; last_neighbor.pop(); last_neighbor.push(i); if (!graph[current].edges[i].bipartite) continue; if (visited[neighbor]) continue; // Ignore edges that don't lie on augmenting path if (current_path.size() % 2 == 0 && !matching.is_edge_match(current, neighbor)) continue; if (current_path.size() % 2 == 1 && matching.is_edge_match(current, neighbor)) continue; visited[neighbor] = true; current_path.push_back(neighbor); last_neighbor.push(-1); break; } // There's nothing to do in this node anymore if (current_path.back() == current) { current_path.pop_back(); last_neighbor.pop(); } } return current_path; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | #include <bits/stdc++.h> using namespace std; struct Change { int x1, y1, x2, y2; }; struct Query { int x, y; }; struct TestCase { int side; int change_count; int query_count; vector<Change> changes; vector<Query> queries; }; TestCase read_test_case(); void solve_test_case(const TestCase&); int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve_test_case(read_test_case()); } TestCase read_test_case() { TestCase test_case; cin >> test_case.side >> test_case.change_count >> test_case.query_count; test_case.changes.resize(test_case.change_count); test_case.queries.resize(test_case.query_count); for (auto& c : test_case.changes) cin >> c.x1 >> c.y1 >> c.x2 >> c.y2; for (auto& q : test_case.queries) cin >> q.x >> q.y; return test_case; } list<pair<int, int>> base_ranges(Change c) { return { {c.x1, c.y1}, {c.x2 + 1, c.y1}, {c.x1, c.y2 + 1}, {c.x2 + 1, c.y2 + 1}, }; } struct Position { int x, y; }; struct Node { struct Edge { using Key = deque<Edge>::iterator; Key reverse; int neighbor; bool bipartite; }; int index; deque<Edge> edges; Edge::Key add(int neighbor, bool bipartite) { Edge e; e.neighbor = neighbor; e.bipartite = bipartite; return edges.insert(edges.end(), e); } void swap() { for (auto& e : edges) { e.reverse->bipartite = !e.bipartite; e.bipartite = !e.bipartite; } } }; struct Matching { vector<int> node_match; int size = 0; Matching(size_t node_count) : node_match(node_count, -1) {} bool is_node_matched(int node) const { return node_match[node] != -1; } bool is_edge_match(int from, int to) const { return node_match[from] == to; } void match(int node1, int node2) { node_match[node1] = node2; node_match[node2] = node1; } void unmatch(int node) { if (node_match[node] != -1) { node_match[node_match[node]] = -1; size--; } node_match[node] = -1; } }; using Graph = vector<Node>; Matching find_maximum_matching(const Graph& graph); void augment_matching(const Graph& graph, Matching& matching); void solve_test_case(const TestCase& test_case) { vector<vector<bool>> data; data.resize(test_case.side + 2); for (auto& v : data) v.resize(test_case.side + 2); for (auto c : test_case.changes) for (auto [x, y] : base_ranges(c)) { data[x][y] = !data[x][y]; } // Calculate result state after first operations vector<vector<bool>> state; state.resize(test_case.side + 1); for (auto& v : state) v.resize(test_case.side + 1, false); for (int x = 1; x <= test_case.side; x++) for (int y = 1; y <= test_case.side; y++) state[x][y] = state[x - 1][y] ^ state[x][y - 1] ^ state[x - 1][y - 1] ^ data[x][y]; // Build graph Graph graph(test_case.side * test_case.side); auto get_index = [](int x, int y, int side) { return (y - 1) * side + (x - 1); }; auto connect = [&](int a, int b, bool bipartite) { auto k1 = graph[a].add(b, bipartite); auto k2 = graph[b].add(a, bipartite); k1->reverse = k2; k2->reverse = k1; }; for (int x = 1; x <= test_case.side; x++) for (int y = 1; y <= test_case.side; y++) { int index = get_index(x, y, test_case.side); for (int i = 1; i <= test_case.side; i++) { if (i == y) continue; int ind = get_index(x, i, test_case.side); connect(index, ind, state[x][y] != state[x][i]); } for (int i = 1; i <= test_case.side; i++) { if (i == x) continue; int ind = get_index(i, y, test_case.side); connect(index, ind, state[x][y] != state[i][y]); } } Matching matching = find_maximum_matching(graph); cout << matching.size << "\n"; // Perform queries for (auto q : test_case.queries) { state[q.x][q.y] = !state[q.x][q.y]; int index = get_index(q.x, q.y, test_case.side); graph[index].swap(); matching.unmatch(index); augment_matching(graph, matching); cout << matching.size << "\n"; } } using Path = list<int>; list<Path> find_augmenting_paths(const Graph& graph, const Matching& matching); void apply_augmenting_path(const Path& path, Matching& matching); Matching find_maximum_matching(const Graph& graph) { Matching matching(graph.size()); augment_matching(graph, matching); return matching; } void augment_matching(const Graph& graph, Matching& matching) { list<Path> paths; do { paths = find_augmenting_paths(graph, matching); for (const Path& path : paths) apply_augmenting_path(path, matching); } while (paths.size() > 0); } void apply_augmenting_path(const Path& path, Matching& matching) { int previous; bool match = false; for (auto current : path) { if (match) matching.match(previous, current); match = !match; previous = current; } matching.size++; } using Visited = vector<bool>; Path find_path_from(int source, const Graph&, const Matching&, Visited&); list<Path> find_augmenting_paths(const Graph& graph, const Matching& matching) { list<Path> paths; Visited visited(graph.size(), false); for (size_t node = 0; node < graph.size(); node++) { if (visited[node] || matching.is_node_matched(node)) continue; auto path = find_path_from(node, graph, matching, visited); if (path.size() > 0) paths.push_back(path); } return paths; } Path find_path_from( int source, const Graph& graph, const Matching& matching, Visited& visited) { Path current_path; current_path.push_back(source); visited[source] = true; stack<int> last_neighbor; last_neighbor.push(-1); while (!current_path.empty()) { int current = current_path.back(); if (current_path.size() % 2 == 0 && !matching.is_node_matched(current)) return current_path; for (size_t i = last_neighbor.top() + 1; i < graph[current].edges.size(); i++) { int neighbor = graph[current].edges[i].neighbor; last_neighbor.pop(); last_neighbor.push(i); if (!graph[current].edges[i].bipartite) continue; if (visited[neighbor]) continue; // Ignore edges that don't lie on augmenting path if (current_path.size() % 2 == 0 && !matching.is_edge_match(current, neighbor)) continue; if (current_path.size() % 2 == 1 && matching.is_edge_match(current, neighbor)) continue; visited[neighbor] = true; current_path.push_back(neighbor); last_neighbor.push(-1); break; } // There's nothing to do in this node anymore if (current_path.back() == current) { current_path.pop_back(); last_neighbor.pop(); } } return current_path; } |