// bal-krolewski-bal.cpp : Ten plik zawiera funkcję „main”. W nim rozpoczyna się i kończy wykonywanie programu. // #include <iostream> #include <queue> #include <vector> #include <list> using namespace std; constexpr int INF = 100000000; constexpr int NIL = 0; bool** t; int** vid; std::vector<int> *edges; std::vector<int> whites; int hmb; int sz; // Mam nadzieje, ze cos takiego jest legalne na potyczkach (nie znalazlem zakazu kopiowania implementacji znanych algorytmow w regulaminie, a na pierwszym etapie OI cos takiego jest chyba dozwolone) // source: https://iq.opengenus.org/hopcroft-karp-algorithm/ class BGraph { // m and n are number of vertices on left // and right sides of Bipartite Graph int m, n; // adj[u] stores adjacents of left side // vertex 'u'. The value of u ranges from 1 to m. // 0 is used for dummy vertex std::list<int>* adj; // pointers for hopcroftKarp() int* pair_u, * pair_v, * dist; public: BGraph(int m, int n); // Constructor ~BGraph(); void addEdge(int u, int v); // To add edge // Returns true if there is an augmenting path bool bfs(); // Adds augmenting path if there is one beginning // with u bool dfs(int u); // Returns size of maximum matching int hopcroftKarpAlgorithm(); }; // Returns size of maximum matching int BGraph::hopcroftKarpAlgorithm() { // pair_u[u] stores pair of u in matching on left side of Bipartite Graph. // If u doesn't have any pair, then pair_u[u] is NIL pair_u = new int[m + 1]; // pair_v[v] stores pair of v in matching on right side of Biparite Graph. // If v doesn't have any pair, then pair_u[v] is NIL pair_v = new int[n + 1]; // dist[u] stores distance of left side vertices dist = new int[m + 1]; // Initialize NIL as pair of all vertices for (int u = 0; u <= m; u++) pair_u[u] = NIL; for (int v = 0; v <= n; v++) pair_v[v] = NIL; // Initialize result int result = 0; // Keep updating the result while there is an // augmenting path possible. while (bfs()) { // Find a free vertex to check for a matching for (int u = 1; u <= m; u++) // If current vertex is free and there is // an augmenting path from current vertex // then increment the result if (pair_u[u] == NIL && dfs(u)) result++; } return result; } // Returns true if there is an augmenting path available, else returns false bool BGraph::bfs() { std::queue<int> q; //an integer queue for bfs // First layer of vertices (set distance as 0) for (int u = 1; u <= m; u++) { // If this is a free vertex, add it to queue if (pair_u[u] == NIL) { // u is not matched so distance is 0 dist[u] = 0; q.push(u); } // Else set distance as infinite so that this vertex is considered next time for availibility else dist[u] = INF; } // Initialize distance to NIL as infinite dist[NIL] = INF; // q is going to contain vertices of left side only. while (!q.empty()) { // dequeue a vertex int u = q.front(); q.pop(); // If this node is not NIL and can provide a shorter path to NIL then if (dist[u] < dist[NIL]) { // Get all the adjacent vertices of the dequeued vertex u std::list<int>::iterator it; for (it = adj[u].begin(); it != adj[u].end(); ++it) { int v = *it; // If pair of v is not considered so far // i.e. (v, pair_v[v]) is not yet explored edge. if (dist[pair_v[v]] == INF) { // Consider the pair and push it to queue dist[pair_v[v]] = dist[u] + 1; q.push(pair_v[v]); } } } } // If we could come back to NIL using alternating path of distinct // vertices then there is an augmenting path available return (dist[NIL] != INF); } // Returns true if there is an augmenting path beginning with free vertex u bool BGraph::dfs(int u) { if (u != NIL) { std::list<int>::iterator it; for (it = adj[u].begin(); it != adj[u].end(); ++it) { // Adjacent vertex of u int v = *it; // Follow the distances set by BFS search if (dist[pair_v[v]] == dist[u] + 1) { // If dfs for pair of v also returnn true then if (dfs(pair_v[v]) == true) { // new matching possible, store the matching pair_v[v] = u; pair_u[u] = v; return true; } } } // If there is no augmenting path beginning with u then. dist[u] = INF; return false; } return true; } // Constructor for initialization BGraph::BGraph(int m, int n) { this->m = m; this->n = n; adj = new std::list<int>[m + 1]; } BGraph::~BGraph() { delete[] adj; delete[] pair_u; delete[] pair_v; delete[] dist; } // function to add edge from u to v void BGraph::addEdge(int u, int v) { adj[u].push_back(v); // Add v to u’s list. } int main() { std::ios_base::sync_with_stdio(0); std::cin.tie(0); std::cout.tie(0); int n, m, q, x, y, a, b, hmw,hmb2; std::cin >> n >> m >> q; t = new bool*[n+7]; vid = new int* [n + 7]; edges = new std::vector<int>[(n + 7) * (n + 7)]; /*matching = new int[(n + 7) * (n + 7)]; distance = new int[(n + 7) * (n + 7)]; */ sz = (n + 7) * (n + 7); for (size_t i = 0; i < n+7; i++) { t[i] = new bool[n + 7]; vid[i] = new int[n + 7]; for (size_t j = 0; j < n+7; j++) { t[i][j] = 0; vid[i][j] = 0; } } while (m--) { std::cin >> x >> y >> a >> b; t[x - 1][y - 1] ^= 1; t[a][b] ^= 1; t[a][y - 1] ^= 1; t[x - 1][b] ^= 1; } for (size_t i = n; i > 0; i--) { for (size_t j = n; j > 0; j--) { t[i][j - 1] ^= t[i][j]; t[i][j] ^= t[i + 1][j]; } } q++; while (q--) { hmb = 0; for (size_t i = 1; i <= n; i++) { for (size_t j = 1; j <= n; j++) { hmb += t[i][j]; } } hmb2 = hmb; hmb = 0; hmw = 0; BGraph bg(hmb2, n * n - hmb2); for (size_t i = 1; i <= n; i++) { whites.clear(); for (size_t j = 1; j <= n; j++) { if (!t[i][j]) { hmw++; vid[i][j] = hmw; whites.push_back(hmw); } } for (size_t j = 1; j <= n; j++) { if (t[i][j]) { hmb++; vid[i][j] = hmb; for (auto xd : whites) { bg.addEdge(hmb, xd); } } } } for (size_t i = 1; i <= n; i++) { whites.clear(); for (size_t j = 1; j <= n; j++) { if (!t[j][i]) { whites.push_back(vid[j][i]); } } for (size_t j = 1; j <= n; j++) { if (t[j][i]) { hmb = vid[j][i]; for (auto xd : whites) { bg.addEdge(hmb, xd); } } } } std::cout << bg.hopcroftKarpAlgorithm() << '\n'; if (q) { std::cin >> a >> b; t[a][b] ^= 1; } } } // Uruchomienie programu: Ctrl + F5 lub menu Debugowanie > Uruchom bez debugowania // Debugowanie programu: F5 lub menu Debugowanie > Rozpocznij debugowanie // Porady dotyczące rozpoczynania pracy: // 1. Użyj okna Eksploratora rozwiązań, aby dodać pliki i zarządzać nimi // 2. Użyj okna programu Team Explorer, aby nawiązać połączenie z kontrolą źródła // 3. Użyj okna Dane wyjściowe, aby sprawdzić dane wyjściowe kompilacji i inne komunikaty // 4. Użyj okna Lista błędów, aby zobaczyć błędy // 5. Wybierz pozycję Projekt > Dodaj nowy element, aby utworzyć nowe pliki kodu, lub wybierz pozycję Projekt > Dodaj istniejący element, aby dodać istniejące pliku kodu do projektu // 6. Aby w przyszłości ponownie otworzyć ten projekt, przejdź do pozycji Plik > Otwórz > Projekt i wybierz plik sln
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | // bal-krolewski-bal.cpp : Ten plik zawiera funkcję „main”. W nim rozpoczyna się i kończy wykonywanie programu. // #include <iostream> #include <queue> #include <vector> #include <list> using namespace std; constexpr int INF = 100000000; constexpr int NIL = 0; bool** t; int** vid; std::vector<int> *edges; std::vector<int> whites; int hmb; int sz; // Mam nadzieje, ze cos takiego jest legalne na potyczkach (nie znalazlem zakazu kopiowania implementacji znanych algorytmow w regulaminie, a na pierwszym etapie OI cos takiego jest chyba dozwolone) // source: https://iq.opengenus.org/hopcroft-karp-algorithm/ class BGraph { // m and n are number of vertices on left // and right sides of Bipartite Graph int m, n; // adj[u] stores adjacents of left side // vertex 'u'. The value of u ranges from 1 to m. // 0 is used for dummy vertex std::list<int>* adj; // pointers for hopcroftKarp() int* pair_u, * pair_v, * dist; public: BGraph(int m, int n); // Constructor ~BGraph(); void addEdge(int u, int v); // To add edge // Returns true if there is an augmenting path bool bfs(); // Adds augmenting path if there is one beginning // with u bool dfs(int u); // Returns size of maximum matching int hopcroftKarpAlgorithm(); }; // Returns size of maximum matching int BGraph::hopcroftKarpAlgorithm() { // pair_u[u] stores pair of u in matching on left side of Bipartite Graph. // If u doesn't have any pair, then pair_u[u] is NIL pair_u = new int[m + 1]; // pair_v[v] stores pair of v in matching on right side of Biparite Graph. // If v doesn't have any pair, then pair_u[v] is NIL pair_v = new int[n + 1]; // dist[u] stores distance of left side vertices dist = new int[m + 1]; // Initialize NIL as pair of all vertices for (int u = 0; u <= m; u++) pair_u[u] = NIL; for (int v = 0; v <= n; v++) pair_v[v] = NIL; // Initialize result int result = 0; // Keep updating the result while there is an // augmenting path possible. while (bfs()) { // Find a free vertex to check for a matching for (int u = 1; u <= m; u++) // If current vertex is free and there is // an augmenting path from current vertex // then increment the result if (pair_u[u] == NIL && dfs(u)) result++; } return result; } // Returns true if there is an augmenting path available, else returns false bool BGraph::bfs() { std::queue<int> q; //an integer queue for bfs // First layer of vertices (set distance as 0) for (int u = 1; u <= m; u++) { // If this is a free vertex, add it to queue if (pair_u[u] == NIL) { // u is not matched so distance is 0 dist[u] = 0; q.push(u); } // Else set distance as infinite so that this vertex is considered next time for availibility else dist[u] = INF; } // Initialize distance to NIL as infinite dist[NIL] = INF; // q is going to contain vertices of left side only. while (!q.empty()) { // dequeue a vertex int u = q.front(); q.pop(); // If this node is not NIL and can provide a shorter path to NIL then if (dist[u] < dist[NIL]) { // Get all the adjacent vertices of the dequeued vertex u std::list<int>::iterator it; for (it = adj[u].begin(); it != adj[u].end(); ++it) { int v = *it; // If pair of v is not considered so far // i.e. (v, pair_v[v]) is not yet explored edge. if (dist[pair_v[v]] == INF) { // Consider the pair and push it to queue dist[pair_v[v]] = dist[u] + 1; q.push(pair_v[v]); } } } } // If we could come back to NIL using alternating path of distinct // vertices then there is an augmenting path available return (dist[NIL] != INF); } // Returns true if there is an augmenting path beginning with free vertex u bool BGraph::dfs(int u) { if (u != NIL) { std::list<int>::iterator it; for (it = adj[u].begin(); it != adj[u].end(); ++it) { // Adjacent vertex of u int v = *it; // Follow the distances set by BFS search if (dist[pair_v[v]] == dist[u] + 1) { // If dfs for pair of v also returnn true then if (dfs(pair_v[v]) == true) { // new matching possible, store the matching pair_v[v] = u; pair_u[u] = v; return true; } } } // If there is no augmenting path beginning with u then. dist[u] = INF; return false; } return true; } // Constructor for initialization BGraph::BGraph(int m, int n) { this->m = m; this->n = n; adj = new std::list<int>[m + 1]; } BGraph::~BGraph() { delete[] adj; delete[] pair_u; delete[] pair_v; delete[] dist; } // function to add edge from u to v void BGraph::addEdge(int u, int v) { adj[u].push_back(v); // Add v to u’s list. } int main() { std::ios_base::sync_with_stdio(0); std::cin.tie(0); std::cout.tie(0); int n, m, q, x, y, a, b, hmw,hmb2; std::cin >> n >> m >> q; t = new bool*[n+7]; vid = new int* [n + 7]; edges = new std::vector<int>[(n + 7) * (n + 7)]; /*matching = new int[(n + 7) * (n + 7)]; distance = new int[(n + 7) * (n + 7)]; */ sz = (n + 7) * (n + 7); for (size_t i = 0; i < n+7; i++) { t[i] = new bool[n + 7]; vid[i] = new int[n + 7]; for (size_t j = 0; j < n+7; j++) { t[i][j] = 0; vid[i][j] = 0; } } while (m--) { std::cin >> x >> y >> a >> b; t[x - 1][y - 1] ^= 1; t[a][b] ^= 1; t[a][y - 1] ^= 1; t[x - 1][b] ^= 1; } for (size_t i = n; i > 0; i--) { for (size_t j = n; j > 0; j--) { t[i][j - 1] ^= t[i][j]; t[i][j] ^= t[i + 1][j]; } } q++; while (q--) { hmb = 0; for (size_t i = 1; i <= n; i++) { for (size_t j = 1; j <= n; j++) { hmb += t[i][j]; } } hmb2 = hmb; hmb = 0; hmw = 0; BGraph bg(hmb2, n * n - hmb2); for (size_t i = 1; i <= n; i++) { whites.clear(); for (size_t j = 1; j <= n; j++) { if (!t[i][j]) { hmw++; vid[i][j] = hmw; whites.push_back(hmw); } } for (size_t j = 1; j <= n; j++) { if (t[i][j]) { hmb++; vid[i][j] = hmb; for (auto xd : whites) { bg.addEdge(hmb, xd); } } } } for (size_t i = 1; i <= n; i++) { whites.clear(); for (size_t j = 1; j <= n; j++) { if (!t[j][i]) { whites.push_back(vid[j][i]); } } for (size_t j = 1; j <= n; j++) { if (t[j][i]) { hmb = vid[j][i]; for (auto xd : whites) { bg.addEdge(hmb, xd); } } } } std::cout << bg.hopcroftKarpAlgorithm() << '\n'; if (q) { std::cin >> a >> b; t[a][b] ^= 1; } } } // Uruchomienie programu: Ctrl + F5 lub menu Debugowanie > Uruchom bez debugowania // Debugowanie programu: F5 lub menu Debugowanie > Rozpocznij debugowanie // Porady dotyczące rozpoczynania pracy: // 1. Użyj okna Eksploratora rozwiązań, aby dodać pliki i zarządzać nimi // 2. Użyj okna programu Team Explorer, aby nawiązać połączenie z kontrolą źródła // 3. Użyj okna Dane wyjściowe, aby sprawdzić dane wyjściowe kompilacji i inne komunikaty // 4. Użyj okna Lista błędów, aby zobaczyć błędy // 5. Wybierz pozycję Projekt > Dodaj nowy element, aby utworzyć nowe pliki kodu, lub wybierz pozycję Projekt > Dodaj istniejący element, aby dodać istniejące pliku kodu do projektu // 6. Aby w przyszłości ponownie otworzyć ten projekt, przejdź do pozycji Plik > Otwórz > Projekt i wybierz plik sln |