#include <algorithm> #include <cassert> #include <iostream> #include <numeric> #include <map> #include <vector> //#include "perr.hpp" using namespace std; const long long dzielnik = 1'000'000'007; long long iloczyn(long long a, long long b) { long long res = a * b; res %= dzielnik; return res; } vector< long long > przygotuj_dane() { int n; cin >> n; vector< long long > pudelka(n); pudelka.resize(n); for (int i = 0; i < n; ++i ) { cin >> pudelka[i]; } sort(pudelka.begin(), pudelka.end(), [](const int&a, const int& b) { return a < b; }); return pudelka; } void przytnij(vector< long long >& zad) { long long mam = 0; auto it = zad.begin(); while(it != zad.end()) { if(mam + 1 < *it) { break; } mam += *it; ++it; } zad.erase(it, zad.end()); } long long n_po_k_inet( long long, long long, long long); long long n_po_k( int k, int n) { long long wynik = n_po_k_inet(n, k, dzielnik); wynik %= dzielnik; return wynik; } map< int, long long > pakuj(int zawartosc, int ile) { map< int, long long > pakunek; for(int i = 1; i <= ile; ++i) { pakunek[i * zawartosc] = n_po_k(i, ile); } return pakunek; } map< int, long long > magazynuj(map< int, long long >const& maga, map< int, long long> const& paka) { map< int, long long > wynik(maga); long long pierwszy_dosc_duzy = paka.begin()->first - 1; //perr << "Moge dostawiac poczawszy od " << pierwszy_dosc_duzy; auto it = maga.lower_bound(pierwszy_dosc_duzy); for( ; it != maga.end(); ++it ) { long long ile_mam = it->first; long long krotnosc = it->second; for(auto jt = paka.begin(); jt != paka.end(); ++jt ) { long long ile_mam_po_dodaniu = ile_mam + jt->first; long long krotnosc_po_dodaniu = jt->second; //perr << " do " << ile_mam << " dodaje " << jt->first << " i wychodzi " << ile_mam_po_dodaniu << " krotnosc " << krotnosc * krotnosc_po_dodaniu; wynik[ile_mam_po_dodaniu] += iloczyn(krotnosc, krotnosc_po_dodaniu); wynik[ile_mam_po_dodaniu] %= dzielnik; } } return wynik; } long long wylicz(vector<long long> const& zad) { auto it = upper_bound(zad.begin(), zad.end(), 1); int ile = it - zad.begin(); //perr << "Jedynki do zapakowania " << ile; map< int, long long > magazyn = pakuj(1, ile); //perr << "Zadanie " << zad; //perr << "Magazyn po zapakowaniu jedynek " << magazyn; while( it != zad.end() ) { auto et = upper_bound(it, zad.end(), *it); int ile = et - it; long long co = *it; map< int, long long > pakunek = pakuj(co, ile); //perr << "Pudełko " << co << " x " << ile << " razy"; //perr << pakunek; //perr << "Do magazynu " << magazyn << " dopakowuje " << pakunek; magazyn = magazynuj(magazyn, pakunek); //perr << "Magazyn " << magazyn; it = et; } return accumulate(magazyn.begin(), magazyn.end(), 0, [](long long suma, auto elem) { suma += static_cast< long long >(elem.second); suma %= dzielnik; return suma; }); } int main() { vector< long long > zad = przygotuj_dane(); przytnij(zad); long long wynik = wylicz(zad); cout << wynik << "\n"; } long long factorial_exponent(long long n, long long p) { long long ex = 0; do { n /= p; ex += n; } while(n > 0); return ex; } long long invert_mod(long long k, long long m) { if (m == 0) return (k == 1 || k == -1) ? k : 0; if (m < 0) m = -m; k %= m; if (k < 0) k += m; int neg = 1; long long p1 = 1, p2 = 0, k1 = k, m1 = m, q, r, temp; while(k1 > 0) { q = m1 / k1; r = m1 % k1; temp = q*p1 + p2; p2 = p1; p1 = temp; m1 = k1; k1 = r; neg = !neg; } return neg ? m - p2 : p2; } // Preconditions: 0 <= k <= min(n,p-1); p > 1 prime long long choose_mod_two(long long n, long long k, long long p) { // reduce n modulo p n %= p; // Trivial checks if (n < k) return 0; if (k == 0 || k == n) return 1; // Now 0 < k < n, save a bit of work if k > n/2 if (k > n/2) k = n-k; // calculate numerator and denominator modulo p long long num = n, den = 1; for(n = n-1; k > 1; --n, --k) { num = (num * n) % p; den = (den * k) % p; } // Invert denominator modulo p den = invert_mod(den,p); return (num * den) % p; } // Preconditions: 0 <= k <= n; p > 1 prime long long choose_mod_one(long long n, long long k, long long p) { // For small k, no recursion is necessary if (k < p) return choose_mod_two(n,k,p); long long q_n, r_n, q_k, r_k, choose; q_n = n / p; r_n = n % p; q_k = k / p; r_k = k % p; choose = choose_mod_two(r_n, r_k, p); // If the exponent of p in choose(n,k) isn't determined to be 0 // before the calculation gets serious, short-cut here: /* if (choose == 0) return 0; */ choose *= choose_mod_one(q_n, q_k, p); return choose % p; } long long n_po_k_inet(long long n, long long k, long long p) { // We deal with the trivial cases first if (k < 0 || n < k) return 0; if (k == 0 || k == n) return 1; // Now check whether choose(n,k) is divisible by p if (factorial_exponent(n, p) > factorial_exponent(k, p) + factorial_exponent(n-k, p)) return 0; // If it's not divisible, do the generic work long long w = choose_mod_one(n,k,p); //perr << "!!! wynik " << w; return w; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | #include <algorithm> #include <cassert> #include <iostream> #include <numeric> #include <map> #include <vector> //#include "perr.hpp" using namespace std; const long long dzielnik = 1'000'000'007; long long iloczyn(long long a, long long b) { long long res = a * b; res %= dzielnik; return res; } vector< long long > przygotuj_dane() { int n; cin >> n; vector< long long > pudelka(n); pudelka.resize(n); for (int i = 0; i < n; ++i ) { cin >> pudelka[i]; } sort(pudelka.begin(), pudelka.end(), [](const int&a, const int& b) { return a < b; }); return pudelka; } void przytnij(vector< long long >& zad) { long long mam = 0; auto it = zad.begin(); while(it != zad.end()) { if(mam + 1 < *it) { break; } mam += *it; ++it; } zad.erase(it, zad.end()); } long long n_po_k_inet( long long, long long, long long); long long n_po_k( int k, int n) { long long wynik = n_po_k_inet(n, k, dzielnik); wynik %= dzielnik; return wynik; } map< int, long long > pakuj(int zawartosc, int ile) { map< int, long long > pakunek; for(int i = 1; i <= ile; ++i) { pakunek[i * zawartosc] = n_po_k(i, ile); } return pakunek; } map< int, long long > magazynuj(map< int, long long >const& maga, map< int, long long> const& paka) { map< int, long long > wynik(maga); long long pierwszy_dosc_duzy = paka.begin()->first - 1; //perr << "Moge dostawiac poczawszy od " << pierwszy_dosc_duzy; auto it = maga.lower_bound(pierwszy_dosc_duzy); for( ; it != maga.end(); ++it ) { long long ile_mam = it->first; long long krotnosc = it->second; for(auto jt = paka.begin(); jt != paka.end(); ++jt ) { long long ile_mam_po_dodaniu = ile_mam + jt->first; long long krotnosc_po_dodaniu = jt->second; //perr << " do " << ile_mam << " dodaje " << jt->first << " i wychodzi " << ile_mam_po_dodaniu << " krotnosc " << krotnosc * krotnosc_po_dodaniu; wynik[ile_mam_po_dodaniu] += iloczyn(krotnosc, krotnosc_po_dodaniu); wynik[ile_mam_po_dodaniu] %= dzielnik; } } return wynik; } long long wylicz(vector<long long> const& zad) { auto it = upper_bound(zad.begin(), zad.end(), 1); int ile = it - zad.begin(); //perr << "Jedynki do zapakowania " << ile; map< int, long long > magazyn = pakuj(1, ile); //perr << "Zadanie " << zad; //perr << "Magazyn po zapakowaniu jedynek " << magazyn; while( it != zad.end() ) { auto et = upper_bound(it, zad.end(), *it); int ile = et - it; long long co = *it; map< int, long long > pakunek = pakuj(co, ile); //perr << "Pudełko " << co << " x " << ile << " razy"; //perr << pakunek; //perr << "Do magazynu " << magazyn << " dopakowuje " << pakunek; magazyn = magazynuj(magazyn, pakunek); //perr << "Magazyn " << magazyn; it = et; } return accumulate(magazyn.begin(), magazyn.end(), 0, [](long long suma, auto elem) { suma += static_cast< long long >(elem.second); suma %= dzielnik; return suma; }); } int main() { vector< long long > zad = przygotuj_dane(); przytnij(zad); long long wynik = wylicz(zad); cout << wynik << "\n"; } long long factorial_exponent(long long n, long long p) { long long ex = 0; do { n /= p; ex += n; } while(n > 0); return ex; } long long invert_mod(long long k, long long m) { if (m == 0) return (k == 1 || k == -1) ? k : 0; if (m < 0) m = -m; k %= m; if (k < 0) k += m; int neg = 1; long long p1 = 1, p2 = 0, k1 = k, m1 = m, q, r, temp; while(k1 > 0) { q = m1 / k1; r = m1 % k1; temp = q*p1 + p2; p2 = p1; p1 = temp; m1 = k1; k1 = r; neg = !neg; } return neg ? m - p2 : p2; } // Preconditions: 0 <= k <= min(n,p-1); p > 1 prime long long choose_mod_two(long long n, long long k, long long p) { // reduce n modulo p n %= p; // Trivial checks if (n < k) return 0; if (k == 0 || k == n) return 1; // Now 0 < k < n, save a bit of work if k > n/2 if (k > n/2) k = n-k; // calculate numerator and denominator modulo p long long num = n, den = 1; for(n = n-1; k > 1; --n, --k) { num = (num * n) % p; den = (den * k) % p; } // Invert denominator modulo p den = invert_mod(den,p); return (num * den) % p; } // Preconditions: 0 <= k <= n; p > 1 prime long long choose_mod_one(long long n, long long k, long long p) { // For small k, no recursion is necessary if (k < p) return choose_mod_two(n,k,p); long long q_n, r_n, q_k, r_k, choose; q_n = n / p; r_n = n % p; q_k = k / p; r_k = k % p; choose = choose_mod_two(r_n, r_k, p); // If the exponent of p in choose(n,k) isn't determined to be 0 // before the calculation gets serious, short-cut here: /* if (choose == 0) return 0; */ choose *= choose_mod_one(q_n, q_k, p); return choose % p; } long long n_po_k_inet(long long n, long long k, long long p) { // We deal with the trivial cases first if (k < 0 || n < k) return 0; if (k == 0 || k == n) return 1; // Now check whether choose(n,k) is divisible by p if (factorial_exponent(n, p) > factorial_exponent(k, p) + factorial_exponent(n-k, p)) return 0; // If it's not divisible, do the generic work long long w = choose_mod_one(n,k,p); //perr << "!!! wynik " << w; return w; } |