1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <iostream>
#include <type_traits>
#include <vector>

constexpr int next_pow2(int v)
{
  --v;
  v |= v >> 1;
  v |= v >> 2;
  v |= v >> 4;
  v |= v >> 8;
  v |= v >> 16;
  ++v;
  return v;
}

struct FlipSumSegTree1D
{
  std::vector<int> tree_;
  std::vector<bool> lazy_;
  int N_;

  FlipSumSegTree1D(int num_nodes)
    : N_(next_pow2(num_nodes))
    , tree_(2 * next_pow2(num_nodes), 0)
    , lazy_(2 * next_pow2(num_nodes), false)
  {}

  constexpr inline int _L(int x) { return x * 2; }
  constexpr inline int _R(int x) { return x * 2 + 1; }

  void _flip_impl(int node, int l, int r, int ql, int qr)
  {
    if (lazy_[node]) {
      tree_[node] = (r - l + 1) - tree_[node];
      if (l != r) {
        lazy_[_L(node)] = !lazy_[_L(node)];
        lazy_[_R(node)] = !lazy_[_R(node)];
      }
      lazy_[node] = false;
    }

    if (ql <= l && r <= qr) {
      tree_[node] = (r - l + 1) - tree_[node];
      if (l != r) {
        lazy_[_L(node)] = !lazy_[_L(node)];
        lazy_[_R(node)] = !lazy_[_R(node)];
      }
    } else if (ql <= r && l <= qr) {
      int mid = (l + r) / 2;
      _flip_impl(_L(node), l, mid, ql, qr);
      _flip_impl(_R(node), mid + 1, r, ql, qr);
      tree_[node] = tree_[_L(node)] + tree_[_R(node)];
    }
  }

  void flip(int ql, int qr) { _flip_impl(1, 1, N_, ql, qr); }

  int _count_impl(int node, int l, int r, int ql, int qr)
  {
    if (lazy_[node]) {
      tree_[node] = (r - l + 1) - tree_[node];
      if (l != r) {
        lazy_[_L(node)] = !lazy_[_L(node)];
        lazy_[_R(node)] = !lazy_[_R(node)];
      }
      lazy_[node] = false;
    }

    if (ql <= l && r <= qr) {
      return tree_[node];
    } else if (ql <= r && l <= qr) {
      int mid = (l + r) / 2;
      return _count_impl(_L(node), l, mid, ql, qr) +
             _count_impl(_R(node), mid + 1, r, ql, qr);
    }
    return 0;
  }

  int count(int ql, int qr) { return _count_impl(1, 1, N_, ql, qr); }
};

struct FlipSumSegTree2D
{
  std::vector<int> tree_;
  std::vector<bool> lazy_;
  std::vector<int> all_xs_;
  std::vector<int> all_ys_;
  FlipSumSegTree1D tree_max_xs_;
  FlipSumSegTree1D tree_max_ys_;
  FlipSumSegTree1D tree_min_xs_;
  FlipSumSegTree1D tree_min_ys_;

  int N_;
  int num_nodes_;

  FlipSumSegTree2D(int num_nodes)
    : num_nodes_(num_nodes)
    , N_(next_pow2(num_nodes))
    , tree_(2 * next_pow2(num_nodes) * 2 * next_pow2(num_nodes), 0)
    , lazy_(2 * next_pow2(num_nodes) * 2 * next_pow2(num_nodes), false)
    , all_xs_(num_nodes + 1, 0)
    , all_ys_(num_nodes + 1, 0)
    , tree_max_xs_(num_nodes)
    , tree_max_ys_(num_nodes)
    , tree_min_xs_(num_nodes)
    , tree_min_ys_(num_nodes)
  {}

  constexpr inline int _LL(int n) { return n * 4 + 0; }
  constexpr inline int _LR(int n) { return n * 4 + 1; }
  constexpr inline int _RL(int n) { return n * 4 + 2; }
  constexpr inline int _RR(int n) { return n * 4 + 3; }

  void _flip_impl(int node,
                  int xl,
                  int xr,
                  int yl,
                  int yr,
                  int qxl,
                  int qxr,
                  int qyl,
                  int qyr)
  {
    if (lazy_[node]) {
      tree_[node] = (xr - xl + 1) * (yr - yl + 1) - tree_[node];
      if (xl != xr || yl != yr) {
        lazy_[_LL(node)] = !lazy_[_LL(node)];
        lazy_[_LR(node)] = !lazy_[_LR(node)];
        lazy_[_RL(node)] = !lazy_[_RL(node)];
        lazy_[_RR(node)] = !lazy_[_RR(node)];
      }
      lazy_[node] = false;
    }

    if (qxl <= xl && xr <= qxr && qyl <= yl && yr <= qyr) {
      tree_[node] = (xr - xl + 1) * (yr - yl + 1) - tree_[node];
      if (xl != xr || yl != yr) {
        lazy_[_LL(node)] = !lazy_[_LL(node)];
        lazy_[_LR(node)] = !lazy_[_LR(node)];
        lazy_[_RL(node)] = !lazy_[_RL(node)];
        lazy_[_RR(node)] = !lazy_[_RR(node)];
      }
    } else if (qxl <= xr && xl <= qxr && qyl <= yr && yl <= qyr) {
      int mx = (xl + xr) / 2;
      int my = (yl + yr) / 2;
      _flip_impl(_LL(node), xl, mx, yl, my, qxl, qxr, qyl, qyr);
      _flip_impl(_LR(node), xl, mx, my + 1, yr, qxl, qxr, qyl, qyr);
      _flip_impl(_RL(node), mx + 1, xr, yl, my, qxl, qxr, qyl, qyr);
      _flip_impl(_RR(node), mx + 1, xr, my + 1, yr, qxl, qxr, qyl, qyr);
      tree_[node] = tree_[_LL(node)] + tree_[_LR(node)] + tree_[_RL(node)] +
                    tree_[_RR(node)];
    }
  }

  void flip(int qxl, int qxr, int qyl, int qyr)
  {
    _flip_impl(1, 1, N_, 1, N_, qxl, qxr, qyl, qyr);
  }

  int _count_impl(int node,
                  int xl,
                  int xr,
                  int yl,
                  int yr,
                  int qxl,
                  int qxr,
                  int qyl,
                  int qyr)
  {
    if (lazy_[node]) {
      tree_[node] = (xr - xl + 1) * (yr - yl + 1) - tree_[node];
      if (xl != xr || yl != yr) {
        lazy_[_LL(node)] = !lazy_[_LL(node)];
        lazy_[_LR(node)] = !lazy_[_LR(node)];
        lazy_[_RL(node)] = !lazy_[_RL(node)];
        lazy_[_RR(node)] = !lazy_[_RR(node)];
      }
      lazy_[node] = false;
    }
    if (qxl <= xl && xr <= qxr && qyl <= yl && yr <= qyr) {
      return tree_[node];
    } else if (qxl <= xr && xl <= qxr && qyl <= yr && yl <= qyr) {
      int mx = (xl + xr) / 2;
      int my = (yl + yr) / 2;
      return _count_impl(_LL(node), xl, mx, yl, my, qxl, qxr, qyl, qyr) +
             _count_impl(_LR(node), xl, mx, my + 1, yr, qxl, qxr, qyl, qyr) +
             _count_impl(_RL(node), mx + 1, xr, yl, my, qxl, qxr, qyl, qyr) +
             _count_impl(_RR(node), mx + 1, xr, my + 1, yr, qxl, qxr, qyl, qyr);
    }
    return 0;
  }

  int count(int qxl, int qxr, int qyl, int qyr)
  {
    return _count_impl(1, 1, N_, 1, N_, qxl, qxr, qyl, qyr);
  }

  void prepare()
  {
    for (int i = 1; i <= num_nodes_; ++i) {
      all_xs_[i] = count(i, i, 1, N_);
      all_ys_[i] = count(1, N_, i, i);

      if (all_xs_[i] == num_nodes_) {
        tree_max_xs_.flip(i, i);
      }
      if (all_ys_[i] == num_nodes_) {
        tree_max_ys_.flip(i, i);
      }
      if (all_xs_[i] == 0) {
        tree_min_xs_.flip(i, i);
      }
      if (all_ys_[i] == 0) {
        tree_min_ys_.flip(i, i);
      }
    }
  }

  void flip_single(int qx, int qy)
  {
    _flip_impl(1, 1, N_, 1, N_, qx, qx, qy, qy);

    int new_all_xs = count(qx, qx, 1, N_);
    int new_all_ys = count(1, N_, qy, qy);

    if (new_all_xs != all_xs_[qx]) {
      if (all_xs_[qx] == num_nodes_ || new_all_xs == num_nodes_) {
        // was maximum and now it's not or wasn't maximum and now it is
        tree_max_xs_.flip(qx, qx);
      }
      if (all_xs_[qx] == 0 || new_all_xs == 0) {
        tree_min_xs_.flip(qx, qx);
      }
      all_xs_[qx] = new_all_xs;
    }

    if (new_all_ys != all_ys_[qy]) {
      if (all_ys_[qy] == num_nodes_ || new_all_ys == num_nodes_) {
        // was maximum and now it's not or wasn't maximum and now it is
        tree_max_ys_.flip(qy, qy);
      }
      if (all_ys_[qy] == 0 || new_all_ys == 0) {
        tree_min_ys_.flip(qy, qy);
      }
      all_ys_[qy] = new_all_ys;
    }
  }

  int current_ans()
  {
    int num_of_xn = tree_max_xs_.count(1, num_nodes_);
    int num_of_yn = tree_max_ys_.count(1, num_nodes_);
    int num_of_x0 = tree_min_xs_.count(1, num_nodes_);
    int num_of_y0 = tree_min_ys_.count(1, num_nodes_);

    int unreachable = num_of_x0 * num_of_y0;
    int cant_throw = num_of_xn * num_of_yn;

    int spaces = num_nodes_ * num_nodes_ - unreachable;
    int possible = count(1, num_nodes_, 1, num_nodes_) - cant_throw;
    return std::min(spaces - possible, possible);
  }
};

int main()
{
  std::ios::sync_with_stdio(false);

  int n, m, q;
  std::cin >> n >> m >> q;

  FlipSumSegTree2D tree(n);

  for (int i = 0; i < m; ++i) {
    int x1, y1, x2, y2;
    std::cin >> x1 >> y1 >> x2 >> y2;
    tree.flip(x1, x2, y1, y2);
  }
  tree.prepare();
  std::cout << tree.current_ans() << std::endl;
  for (int i = 0; i < q; ++i) {
    int x, y;
    std::cin >> x >> y;
    tree.flip_single(x, y);
    std::cout << tree.current_ans() << std::endl;
  }

  return 0;
}