#include <bits/stdc++.h> using namespace std; typedef long long ll; long long factorial(long long n); //Factorial long long factorial(long long n, long long x ); // Factorial with modulo bool isPowerOfTwo (long long x); //Function to check if x is power of 2 long long binpow(long long a, long long b); // return a ^ b long long binpow(long long a, long long b, long long m); // return (a^b) mod m long long lcm (long long a, long long b); // least common multiple long long gcd(long long a, long long b, long long& x, long long& y); //extended euclidean algorithm pair<long long, long long> fib (long long n); // n-th and (n+1)-th Fibonacci numbers //dfs long long mostSignificantDigit(long long N ); long long numberOfDigits(long long N ); typedef vector<int> vi; typedef vector<long long> vll; typedef vector<pair<int,int>> pi; typedef vector<pair<long long,long long>> pll; #define F first #define S second #define PB push_back #define MP make_pair #define REP(i,a,b) for (int i = a; i <= b; i++) #define REPA(i,a,b,c) for (int i = a; i <= b; i+=c) //TRICKS //Checking if the number is even or odd without using the % operator: /* if (num & 1) cout << "ODD"; else cout << "EVEN"; */ //emplace_back() instead of push_back() /* // are all of the elements positive? all_of(first, first+n, ispositive()); // is there at least one positive element? any_of(first, first+n, ispositive()); // are none of the elements positive? none_of(first, first+n, ispositive()); Copy Algorithm: used to copy elements from one container to another. // copy 5 elements from source to target copy_n(source, sizeOfArray, target); Initialization in Binary form auto number = 0b011; cout << number; OUTPUT: 3 */ const int N_MAX = 2123; int n; int k; int a [ N_MAX ]; int main() { ios_base::sync_with_stdio(0); cin >> n >> k; REP(i,1,n) { cin >> a [ i ]; } sort(a+1,a+1+n); reverse(a+1, a+1+n); while(k+1 <= n && a [ k + 1 ] == a [ k ] ) k++; cout << k << '\n'; return 0; } long long factorial(long long n) { if (n == 0) return 1; return n * factorial(n - 1); } long long factorial(long long n, long long x ) { ll res = 1; for ( ll i = 1; i <= n; i++ ) { res *= i; res %= x; } return res; } // return a ^ b long long binpow(long long a, long long b) { long long res = 1; while (b > 0) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } // return (a^b) mod m long long binpow(long long a, long long b, long long m) { a %= m; long long res = 1; while (b > 0) { if (b & 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } // least common multiple long long lcm (long long a, long long b) { return a / __gcd(a, b) * b; } //extended euclidean algorithm long long gcd(long long a, long long b, long long& x, long long& y) { x = 1, y = 0; long long x1 = 0, y1 = 1, a1 = a, b1 = b; while (b1) { long long q = a1 / b1; tie(x, x1) = make_tuple(x1, x - q * x1); tie(y, y1) = make_tuple(y1, y - q * y1); tie(a1, b1) = make_tuple(b1, a1 - q * b1); } return a1; } // n-th and (n+1)-th Fibonacci numbers pair<long long, long long> fib (long long n) { if (n == 0) return {0, 1}; auto p = fib(n >> 1); long long c = p.first * (2 * p.second - p.first); long long d = p.first * p.first + p.second * p.second; if (n & 1) return {d, c + d}; else return {c, d}; } //dfs /* void dfs(int v ) { visited[v] = true; for (int i = 0; i < (int) G [ v ].size(); i++ ) { int u = G [ v ] [ i ]; if (!visited[u]) dfs(u); } } */ //bfs /* */ /* Function to check if x is power of 2*/ bool isPowerOfTwo (long long x) { /* First x in the below expression is for the case when x is 0 */ return x && (!(x&(x-1))); } long long mostSignificantDigit(long long N ) { long double K = log10(N); K = K - floor(K); long long X = pow(10, K); return X; } long long numberOfDigits(long long N ) { N = floor(log10(N)) + 1; return N; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | #include <bits/stdc++.h> using namespace std; typedef long long ll; long long factorial(long long n); //Factorial long long factorial(long long n, long long x ); // Factorial with modulo bool isPowerOfTwo (long long x); //Function to check if x is power of 2 long long binpow(long long a, long long b); // return a ^ b long long binpow(long long a, long long b, long long m); // return (a^b) mod m long long lcm (long long a, long long b); // least common multiple long long gcd(long long a, long long b, long long& x, long long& y); //extended euclidean algorithm pair<long long, long long> fib (long long n); // n-th and (n+1)-th Fibonacci numbers //dfs long long mostSignificantDigit(long long N ); long long numberOfDigits(long long N ); typedef vector<int> vi; typedef vector<long long> vll; typedef vector<pair<int,int>> pi; typedef vector<pair<long long,long long>> pll; #define F first #define S second #define PB push_back #define MP make_pair #define REP(i,a,b) for (int i = a; i <= b; i++) #define REPA(i,a,b,c) for (int i = a; i <= b; i+=c) //TRICKS //Checking if the number is even or odd without using the % operator: /* if (num & 1) cout << "ODD"; else cout << "EVEN"; */ //emplace_back() instead of push_back() /* // are all of the elements positive? all_of(first, first+n, ispositive()); // is there at least one positive element? any_of(first, first+n, ispositive()); // are none of the elements positive? none_of(first, first+n, ispositive()); Copy Algorithm: used to copy elements from one container to another. // copy 5 elements from source to target copy_n(source, sizeOfArray, target); Initialization in Binary form auto number = 0b011; cout << number; OUTPUT: 3 */ const int N_MAX = 2123; int n; int k; int a [ N_MAX ]; int main() { ios_base::sync_with_stdio(0); cin >> n >> k; REP(i,1,n) { cin >> a [ i ]; } sort(a+1,a+1+n); reverse(a+1, a+1+n); while(k+1 <= n && a [ k + 1 ] == a [ k ] ) k++; cout << k << '\n'; return 0; } long long factorial(long long n) { if (n == 0) return 1; return n * factorial(n - 1); } long long factorial(long long n, long long x ) { ll res = 1; for ( ll i = 1; i <= n; i++ ) { res *= i; res %= x; } return res; } // return a ^ b long long binpow(long long a, long long b) { long long res = 1; while (b > 0) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } // return (a^b) mod m long long binpow(long long a, long long b, long long m) { a %= m; long long res = 1; while (b > 0) { if (b & 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } // least common multiple long long lcm (long long a, long long b) { return a / __gcd(a, b) * b; } //extended euclidean algorithm long long gcd(long long a, long long b, long long& x, long long& y) { x = 1, y = 0; long long x1 = 0, y1 = 1, a1 = a, b1 = b; while (b1) { long long q = a1 / b1; tie(x, x1) = make_tuple(x1, x - q * x1); tie(y, y1) = make_tuple(y1, y - q * y1); tie(a1, b1) = make_tuple(b1, a1 - q * b1); } return a1; } // n-th and (n+1)-th Fibonacci numbers pair<long long, long long> fib (long long n) { if (n == 0) return {0, 1}; auto p = fib(n >> 1); long long c = p.first * (2 * p.second - p.first); long long d = p.first * p.first + p.second * p.second; if (n & 1) return {d, c + d}; else return {c, d}; } //dfs /* void dfs(int v ) { visited[v] = true; for (int i = 0; i < (int) G [ v ].size(); i++ ) { int u = G [ v ] [ i ]; if (!visited[u]) dfs(u); } } */ //bfs /* */ /* Function to check if x is power of 2*/ bool isPowerOfTwo (long long x) { /* First x in the below expression is for the case when x is 0 */ return x && (!(x&(x-1))); } long long mostSignificantDigit(long long N ) { long double K = log10(N); K = K - floor(K); long long X = pow(10, K); return X; } long long numberOfDigits(long long N ) { N = floor(log10(N)) + 1; return N; } |