1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#pragma GCC optimize("Ofast,unroll-loops")

#include <bits/stdc++.h>

#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

typedef tree<int, null_type, less<int>, rb_tree_tag,
             tree_order_statistics_node_update>
    indexed_set;

#define ll long long
#define ld long double
#define u unsigned

#define PB push_back
#define MP make_pair

#define LPI(i, a, b, d) for (int i = a; i < b; i += d)
#define LPD(i, a, b, d) for (int i = a; i > b; i -= d)
#define REP(n) for (int i = 0; i < n; ++i)

#ifndef INT_MAX
#define INT_MAX 2147483647
#endif
#ifndef INT_MIN
#define INT_MIN -2147483648
#endif
#define LL_MIN -9223372036854775808
#define LL_MAX 9223372036854775807

using VI = vector<int>;
using VVI = vector<VI>;
using VS = vector<string>;
using VVS = vector<VS>;
using PI = pair<int, int>;
using TI = tuple<int, int, int>;

#define ZEROS_B(x) __builtin_clz(x)
#define ZEROS_E(x) __builtin_ctz(x)

constexpr double pi = acos(-1);
constexpr int mod = 998244353;
constexpr double eps = 1e-10;
constexpr int N = 1e2 + 10;

template <typename T> T gcd(T a, T b) {
  if (!a || !b)
    return a | b;
  unsigned shift = __builtin_ctz(a | b);
  a >>= __builtin_ctz(a);
  do {
    b >>= __builtin_ctz(b);
    if (a > b)
      swap(a, b);
    b -= a;
  } while (b);
  return a << shift;
}

template <typename T> T LCM(T a, T b) { return a / GCD(a, b) * b; }

auto main() -> int {
  // freopen("input.txt", "r", stdin);
  // freopen("output.txt", "w", stdout);

  ios::sync_with_stdio(false);
  cin.tie(0);

  ll n,m;
  cin >> n >> m;
  vector<int> psb(n);
  int p = 1;
  LPI(i,0, n,1) {
      if(i == m) ++p;
      psb[i] = p;
  }
  int ans = 0;
  while(next_permutation(psb.begin(), psb.end())) {
      ans = ans % 10000000007 + 1;
  }

  cout << ans * m << '\n';

  return 0;
}