1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
// {{{
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

#define FOR(i, b, e) for (int i = (b); i <= (e); i++)
#define FORD(i, b, e) for (int i = (e); i >= (b); i--)
#define MP make_pair
#define FS first
#define ND second
#define PB push_back
#define ALL(x) x.begin(), x.end()

using namespace std;

using LL = long long;
using LD = long double;
using PII = pair<int,int>;
using PLL = pair<LL,LL>;
using PLD = pair<LD,LD>;
using VI = vector<int>;
using VLL = vector<LL>;
using VLD = vector<LD>;
using VB = vector<bool>;
using VS = vector<string>;
template<class T>
using V = vector<T>;
template<class T1, class T2>
using P = pair<T1,T2>;
template<class T,class Comp=greater<T>>
using PQ = priority_queue<T,V<T>,Comp>;

template<class T>
int sz(const T& a) { return (int)a.size(); }
template<class T>
void amin(T& a, T b) { a = min(a, b); }
template<class T>
void amax(T& a, T b) { a = max(a, b); }

/*
const size_t rseed =
  std::chrono::high_resolution_clock::now().time_since_epoch().count();
mt19937 rnd(rseed);
template<class T> T randint(T lo, T hi)
{
  return uniform_int_distribution<T>{lo,hi}(rnd);
}
*/

/* find_by_order(k) - k'th largest counting from 0;
   order_of_key(k) - number of items strictly smaller than k;
   join(other), split(k, other) - all keys in other greater than in *(this). */
template<class K,class V,class Comp=less<K>>
using ordered_map = __gnu_pbds::tree<K,V,Comp,
      __gnu_pbds::rb_tree_tag,__gnu_pbds::tree_order_statistics_node_update>;
template<class T,class Comp=less<T>>
using ordered_set = ordered_map<T,__gnu_pbds::null_type,Comp>;

const int inf = 1e9 + 1;
const LL infl = 1e18 + 1;

void solve();
// }}}

int main()
{
  int t = 1;
  // scanf("%d", &t);
  FOR(i, 1, t) {
    // printf("Case #%d: ", i);
    solve();
  }
}

const int N = 3000;
const int M = 1e9 + 7;

int n, m, dp[2][N + 2][N + 2], ans;

void add(int& x, int y)
{
  x = (x + y) % M;
}

void solve()
{
  scanf("%d %d", &n, &m);

  dp[1][0][0] = 1;

  FOR(k, 0, n) FOR(l, 0, n - 1) {
    add(dp[0][k + 1][l + 1], 1ll * (m - k + M) * dp[1][k][l] % M);
    add(dp[1][k][l + 1], 1ll * k * dp[1][k][l] % M);
    add(dp[0][k][l + 1], 1ll * (m - k + M) * dp[0][k][l] % M);
    add(dp[1][k][l + 1], 1ll * k * dp[0][k][l] % M);
  }

  FOR(k, 0, n) add(ans, dp[1][k][n]);
  printf("%d\n", ans);
}