#include <iostream> #include <cassert> #include <algorithm> #include <vector> #include <set> #include <numeric> using namespace std; #ifdef GGDEBUG #define dbg printf #else #define dbg //printf #endif int main() { int Z; scanf("%d", &Z); while(Z--) { int n; scanf("%d", &n); char input[110000]; scanf("%s", input); bool all_ok = true; for (int i = 0; i < n; ++i) { if (input[i] == '1') { all_ok = false; break; } } if (all_ok) { printf("0\n"); continue; } int start = 0, end = n; std::vector<int> edges; if (input[0] == '0') { // first edge int i = 0; while (input[i] == '0') i++; edges.push_back(i); start = i; } if (input[n-1] == '0') { // first edge int i = n-1; while (input[i] == '0') i--; edges.push_back(n-i-1); end = i+1; } int count_alive = 0; std::vector<int> batches; for(int i = start; i < end; ++i) { if (input[i] == '0') { // alive, count it count_alive++; } else { // virus, make new batch if (count_alive > 0) { batches.push_back(count_alive); count_alive = 0; } } } // sort batches std::sort(edges.rbegin(), edges.rend()); std::sort(batches.rbegin(), batches.rend()); #ifdef GGDEBUG cout << "edges: "; for(auto x: edges) { cout << x << " "; } cout << endl; cout << "batches: "; for(auto x: batches) { cout << x << " "; } cout << endl; #endif auto calculate = [&](int accumulated_drop){ // count result without taking edges unsigned long long saved = 0; int edges_used = 0; int batches_used = 0; while(true) { auto b = batches[batches_used]; int e = 0; if (edges_used < edges.size()) e = edges[edges_used]; auto alive = b - accumulated_drop; auto alive_edge = e - accumulated_drop/2; if (alive_edge > 0 && alive_edge > alive) { dbg("Take edge %d\n", alive_edge); saved += alive_edge; accumulated_drop += 2; edges_used++; continue; } if (alive == 1) { dbg("Saved %d\n", 1); saved += 1; accumulated_drop += 2; } else if (alive >= 2) { dbg("Saved %d\n", alive-1); saved += alive-1; accumulated_drop += 4; } else { break; } batches_used++; } dbg("saved: %d\n", saved); return saved; }; auto calculate_batch = [&](int accumulated_drop){ // count result without taking edges unsigned long long saved = 0; int batches_used = 0; while(true) { auto b = batches[batches_used]; auto alive = b - accumulated_drop; if (alive == 1) { dbg("Saved %d\n", 1); saved += 1; accumulated_drop += 2; } else if (alive >= 2) { dbg("Saved %d\n", alive-1); saved += alive-1; accumulated_drop += 4; } else { break; } batches_used++; } dbg("saved: %d\n", saved); return saved; }; std::function<int(int, int,int)> calculate2 = [&](int accumulated_drop, int edges_used, int batches_used) { int saved_edge = 0; int saved_batch = 0; dbg("(%d %d %d)\n", accumulated_drop, edges_used, batches_used); // 1) take edge if (edges_used < edges.size()) { saved_edge = edges[edges_used] - accumulated_drop/2; if ( saved_edge > 0 ) { dbg("take edge: %d\n", saved_edge); saved_edge += calculate2(accumulated_drop + 2, edges_used+1, batches_used); } } // 2) take batch if (batches_used < batches.size()) { saved_batch = batches[batches_used] - accumulated_drop; if ( saved_batch == 1 ) { dbg("take single batch: %d\n", saved_batch); saved_batch += calculate2(accumulated_drop + 4, edges_used, batches_used+1); } else if ( saved_batch > 1 ) { dbg("take batch: %d\n", saved_batch-1); saved_batch += -1+calculate2(accumulated_drop + 4, edges_used, batches_used+1); } } dbg("saved: %d %d\n", saved_edge, saved_batch); return max(0, max(saved_edge, saved_batch)); }; int without_edges = 0; int with_edge_1 = 0; int with_edge_12 = 0; without_edges = calculate2(0, 0, 0); // if (edges.size() == 1) { // with_edge_1 = edges[0] + calculate(2); // } // if (edges.size() == 2) { // with_edge_12 = edges[0] + edges[1] - 1 + calculate(4); // } dbg("result: %d %d %d\n", without_edges, with_edge_1, with_edge_12); auto maxi = std::max({without_edges, with_edge_1, with_edge_12}); cout << n-maxi << endl; // if (count_alive > 0) { // count.push_back(count_alive); // rate.push_back(2); // count_alive = 0; // } // if (input[0] == '0') { // rate[0] = 1; // } // if (input[n-1] == '0') { // *rate.rbegin() = 1; // } // int batches = count.size(); // // for (auto x: count) { // // if (x == -1) { // // cout << 'x'; // // } else { // // cout << x;// << ' '; // // } // // } // // cout << endl; // // for (auto x: rate) { // // cout << x << ' '; // // } // // cout << endl; // // cout << endl; // // cout << endl; // int cumulative_rate = accumulate(rate.begin(), rate.end(), 0); // // printf("cumulative: %d\n", cumulative_rate); // bool stopped = false; // auto spread = [&]() { // // now spread the disease // stopped = true; // for (int i = 0; i < count.size(); ++i) { // assert(count[i] >= 0); // if (rate[i] > 0 && count[i] > 0) { // stopped = false; // auto rate_now = min(rate[i], count[i]); // count[i] -= rate_now; // // printf("%d:: %d -= %d\n", i, count[i], rate_now); // if (count[i] == 0) { // rate[i] == 0; // } // } // } // }; // while (!stopped) { // // cout << endl; // // cout << endl; // // cout << endl; // // for (auto x: count) { // // if (x == -1) { // // cout << 'x'; // // } else { // // cout << x;// << ' '; // // } // // } // // cout << endl; // // for (auto x: rate) { // // cout << x;// << ' '; // // } // // cout << endl; // // find largest one // auto maxi = max_element(count.begin(), count.end()); // auto index = maxi - count.begin(); // // printf("now max: %d at %d with rate %d\n", *maxi, index, rate[index]); // if (count[index] == 0) { // // nothing else to do // break; // } // dbg("%d %d %d\n", count[0], count[index], count[batches-1]); // dbg("r: %d %d %d\n", rate[0], rate[index], rate[batches-1]); // int edge_index = -1; // if (count[0] > 0 && rate[0] == 1 && count[0] + 1 >= count[index]) { // // prefer first edge // dbg("Prefer first edge!\n"); // edge_index = 0; // } // if (count[batches-1] > 0 && rate[batches-1] == 1 && count[batches-1] + 1 >= count[index]) { // // prefer last edge // dbg("Prefer last edge!\n"); // edge_index = batches - 1; // } // if (edge_index >= 0) { // index = edge_index; // } // if (rate[index] == 1) { // // edge, will take only one move // saved += count[index]; // dbg("Saved edge: %d at %d\n", count[index], index); // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // single town, vaccinate it and that's it // if (count[index] == 1) { // dbg("Saved single: %d\n", count[index]); // saved += 1; // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // two towns, vaccinate one and let second one die // if (count[index] == 2) { // dbg("Saved twins: %d\n", count[index]); // saved += 1; // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // more than 2 towns in this batch - vaccinate batch // dbg("Saved batch: %d\n", count[index]); // saved += count[index] - 1; // count[index] = 0; // rate[index] = 0; // spread(); // spread(); // } // // printf("Result:\n"); // // cout << result << endl; // // cout << "saved: " << saved << endl; // cout << n-saved << endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | #include <iostream> #include <cassert> #include <algorithm> #include <vector> #include <set> #include <numeric> using namespace std; #ifdef GGDEBUG #define dbg printf #else #define dbg //printf #endif int main() { int Z; scanf("%d", &Z); while(Z--) { int n; scanf("%d", &n); char input[110000]; scanf("%s", input); bool all_ok = true; for (int i = 0; i < n; ++i) { if (input[i] == '1') { all_ok = false; break; } } if (all_ok) { printf("0\n"); continue; } int start = 0, end = n; std::vector<int> edges; if (input[0] == '0') { // first edge int i = 0; while (input[i] == '0') i++; edges.push_back(i); start = i; } if (input[n-1] == '0') { // first edge int i = n-1; while (input[i] == '0') i--; edges.push_back(n-i-1); end = i+1; } int count_alive = 0; std::vector<int> batches; for(int i = start; i < end; ++i) { if (input[i] == '0') { // alive, count it count_alive++; } else { // virus, make new batch if (count_alive > 0) { batches.push_back(count_alive); count_alive = 0; } } } // sort batches std::sort(edges.rbegin(), edges.rend()); std::sort(batches.rbegin(), batches.rend()); #ifdef GGDEBUG cout << "edges: "; for(auto x: edges) { cout << x << " "; } cout << endl; cout << "batches: "; for(auto x: batches) { cout << x << " "; } cout << endl; #endif auto calculate = [&](int accumulated_drop){ // count result without taking edges unsigned long long saved = 0; int edges_used = 0; int batches_used = 0; while(true) { auto b = batches[batches_used]; int e = 0; if (edges_used < edges.size()) e = edges[edges_used]; auto alive = b - accumulated_drop; auto alive_edge = e - accumulated_drop/2; if (alive_edge > 0 && alive_edge > alive) { dbg("Take edge %d\n", alive_edge); saved += alive_edge; accumulated_drop += 2; edges_used++; continue; } if (alive == 1) { dbg("Saved %d\n", 1); saved += 1; accumulated_drop += 2; } else if (alive >= 2) { dbg("Saved %d\n", alive-1); saved += alive-1; accumulated_drop += 4; } else { break; } batches_used++; } dbg("saved: %d\n", saved); return saved; }; auto calculate_batch = [&](int accumulated_drop){ // count result without taking edges unsigned long long saved = 0; int batches_used = 0; while(true) { auto b = batches[batches_used]; auto alive = b - accumulated_drop; if (alive == 1) { dbg("Saved %d\n", 1); saved += 1; accumulated_drop += 2; } else if (alive >= 2) { dbg("Saved %d\n", alive-1); saved += alive-1; accumulated_drop += 4; } else { break; } batches_used++; } dbg("saved: %d\n", saved); return saved; }; std::function<int(int, int,int)> calculate2 = [&](int accumulated_drop, int edges_used, int batches_used) { int saved_edge = 0; int saved_batch = 0; dbg("(%d %d %d)\n", accumulated_drop, edges_used, batches_used); // 1) take edge if (edges_used < edges.size()) { saved_edge = edges[edges_used] - accumulated_drop/2; if ( saved_edge > 0 ) { dbg("take edge: %d\n", saved_edge); saved_edge += calculate2(accumulated_drop + 2, edges_used+1, batches_used); } } // 2) take batch if (batches_used < batches.size()) { saved_batch = batches[batches_used] - accumulated_drop; if ( saved_batch == 1 ) { dbg("take single batch: %d\n", saved_batch); saved_batch += calculate2(accumulated_drop + 4, edges_used, batches_used+1); } else if ( saved_batch > 1 ) { dbg("take batch: %d\n", saved_batch-1); saved_batch += -1+calculate2(accumulated_drop + 4, edges_used, batches_used+1); } } dbg("saved: %d %d\n", saved_edge, saved_batch); return max(0, max(saved_edge, saved_batch)); }; int without_edges = 0; int with_edge_1 = 0; int with_edge_12 = 0; without_edges = calculate2(0, 0, 0); // if (edges.size() == 1) { // with_edge_1 = edges[0] + calculate(2); // } // if (edges.size() == 2) { // with_edge_12 = edges[0] + edges[1] - 1 + calculate(4); // } dbg("result: %d %d %d\n", without_edges, with_edge_1, with_edge_12); auto maxi = std::max({without_edges, with_edge_1, with_edge_12}); cout << n-maxi << endl; // if (count_alive > 0) { // count.push_back(count_alive); // rate.push_back(2); // count_alive = 0; // } // if (input[0] == '0') { // rate[0] = 1; // } // if (input[n-1] == '0') { // *rate.rbegin() = 1; // } // int batches = count.size(); // // for (auto x: count) { // // if (x == -1) { // // cout << 'x'; // // } else { // // cout << x;// << ' '; // // } // // } // // cout << endl; // // for (auto x: rate) { // // cout << x << ' '; // // } // // cout << endl; // // cout << endl; // // cout << endl; // int cumulative_rate = accumulate(rate.begin(), rate.end(), 0); // // printf("cumulative: %d\n", cumulative_rate); // bool stopped = false; // auto spread = [&]() { // // now spread the disease // stopped = true; // for (int i = 0; i < count.size(); ++i) { // assert(count[i] >= 0); // if (rate[i] > 0 && count[i] > 0) { // stopped = false; // auto rate_now = min(rate[i], count[i]); // count[i] -= rate_now; // // printf("%d:: %d -= %d\n", i, count[i], rate_now); // if (count[i] == 0) { // rate[i] == 0; // } // } // } // }; // while (!stopped) { // // cout << endl; // // cout << endl; // // cout << endl; // // for (auto x: count) { // // if (x == -1) { // // cout << 'x'; // // } else { // // cout << x;// << ' '; // // } // // } // // cout << endl; // // for (auto x: rate) { // // cout << x;// << ' '; // // } // // cout << endl; // // find largest one // auto maxi = max_element(count.begin(), count.end()); // auto index = maxi - count.begin(); // // printf("now max: %d at %d with rate %d\n", *maxi, index, rate[index]); // if (count[index] == 0) { // // nothing else to do // break; // } // dbg("%d %d %d\n", count[0], count[index], count[batches-1]); // dbg("r: %d %d %d\n", rate[0], rate[index], rate[batches-1]); // int edge_index = -1; // if (count[0] > 0 && rate[0] == 1 && count[0] + 1 >= count[index]) { // // prefer first edge // dbg("Prefer first edge!\n"); // edge_index = 0; // } // if (count[batches-1] > 0 && rate[batches-1] == 1 && count[batches-1] + 1 >= count[index]) { // // prefer last edge // dbg("Prefer last edge!\n"); // edge_index = batches - 1; // } // if (edge_index >= 0) { // index = edge_index; // } // if (rate[index] == 1) { // // edge, will take only one move // saved += count[index]; // dbg("Saved edge: %d at %d\n", count[index], index); // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // single town, vaccinate it and that's it // if (count[index] == 1) { // dbg("Saved single: %d\n", count[index]); // saved += 1; // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // two towns, vaccinate one and let second one die // if (count[index] == 2) { // dbg("Saved twins: %d\n", count[index]); // saved += 1; // count[index] = 0; // rate[index] = 0; // spread(); // continue; // } // // more than 2 towns in this batch - vaccinate batch // dbg("Saved batch: %d\n", count[index]); // saved += count[index] - 1; // count[index] = 0; // rate[index] = 0; // spread(); // spread(); // } // // printf("Result:\n"); // // cout << result << endl; // // cout << "saved: " << saved << endl; // cout << n-saved << endl; } return 0; } |