1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//Konrad Paluszek,University of Warsaw(former XIV LO Staszic)
//#STAY AT HOME
#ifndef LOCAL
#pragma GCC optimize("O3")
#endif
#define TIME (chrono::steady_clock::now().time_since_epoch().count())
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#define xfm(a,b)a##b
#define xwb(a,b)xfm(a,b)
#define _ xwb(nvj,__LINE__)
#define __ xwb(kjy,__LINE__)
#define ___ xwb(cjm,__LINE__)
#define REP(i,n)for(urs(n)i=0;i<(n);++i)
#define PER(r...)for(bool _=1;_||next_permutation(r);_=false)
#define FS(r)r.first,r.second
#define ALL(r)(r).begin(),(r).end()
#define M0(r) memset(r,0,sizeof(r))
#define sim template<class c
#define forbits(i,m)if(m)for(urs(m)i=ctz(m),i##nvj=m;i##nvj;i##nvj^=((urs(m))1<<i),i=i##nvj?ctz(i##nvj):0)
#define fordbits(i,m)if(m)for(urs(m)i=8*sizeof(m)-clz(m)-1,i##nxd=m;i##nxd;i##nxd^=((urs(m))1<<i),i=i##nxd?8*sizeof(m)-clz(i##nxd)-1:0)
#define ksets(t, m, k, n)for(t m=(((t)1<<(k))-1);m<((t)1<<(n));m=nux(m))
#define urs(r...)typename decay<decltype(r)>::type
#define hur(f,g)sim>int f(c a){if(sizeof(c)==8)return g##ll(a);return g(a);}
using namespace __gnu_pbds;using namespace std;using ll=long long;using ld=long double;using ull=unsigned long long;using vi=vector<int>;using vll=vector<ll>;using pii=pair<int,int>;using pll=pair<ll,ll>;using vpii=vector<pii>;using unt=unsigned int;sim>using min_queue=priority_queue<c,vector<c>,greater<>>;sim,class b,class cmp=less<c>>using ordered_map=tree<c,b,cmp,rb_tree_tag,tree_order_statistics_node_update>;sim,class cmp=less<c>>using ordered_set=ordered_map<c,null_type,cmp>;hur(popc,__builtin_popcount)hur(ctz,__builtin_ctz)hur(clz,__builtin_clz)sim,class N>bool mini(c&o,const N&h){if(o>h)return o=h,1;return 0;}sim,class N>bool maxi(c&o,const N&h){if(o<h)return o=h,1;return 0;}
#ifdef LOCAL
#include </home/konrad/cp/headers/debuglib.hpp>
#else
#define loc(...)
#define onl(r...)r
#define debug(...)
#define print_stack(...)
#define mark_stack(...)
#define set_pre(...)
#define reg_it(...)
#define def_op(...) struct _{};
#define mask_set(...)
#define exit my_exit
void __resources();
void my_exit(int x) {fflush(stdout);
#ifdef LOCAL2
__resources();
#endif
_Exit(x);}
#endif
#define next nexT
#define prev preV
#define tree trEE
#define left lefT
#define right righT
#define div diV
#define y1 y_1
#define pow don't'
ull mix(ull o){o+=0x9e3779b97f4a7c15;o=(o^(o>>30))*0xbf58476d1ce4e5b9;o=(o^(o>>27))*0x94d049bb133111eb;return o^(o>>31);}ull SALT=0x7a14a4b0881ebf9,tqu=0x7a14a4b0881ebf9;ull my_rand(){return tqu=mix(tqu);}void my_srand(ull x){SALT=tqu=x;}const int inf=1023400000;const ll llinf=1234567890000000000ll;ll fix(ll o, ll m){o%=m;if(o<0)o+=m;return o;}
#define rand my_rand
#define srand my_srand
#define random_shuffle(r...)random_shuffle(r,[](int _){return my_rand()%_;})
sim>inline c nux(c m){if(!m)return numeric_limits<c>::max();c A=m&-m;c B=~((A-1)^m);c C=B&-B;c D=(C>>(1+ctz(A)))-1;return C|(m&~(C-1))|D;}sim>void unq(c&x){x.resize(unique(ALL(x))-x.begin());}
//#STAY AT HOME
const int mod = 1e9 + 7;
#undef tree
#define root this->node_begin()
#define none this->node_end()
#define V get_metadata().in
#define L get_l_child()
#define R get_r_child()
//struct Mal potrzebny tylko jesli Op::T ma nietrywialny konstruktor
	template <class c> struct Mal : allocator<c> {
		template <class U> struct rebind { using other = Mal<U>; };
	};
	template <class...c> struct Mal<detail::rb_tree_node_<c...> > :
	allocator<detail::rb_tree_node_<c...> > {
		using v = typename Mal::value_type;
		v* allocate(int) {
			v* ans = allocator<v>::allocate(1);
			new (&ans->get_metadata()) typename v::metadata_type;
			return ans;
		}
	};
//Jesli nie potrzebujemy find_by_order i order_of_key, to wystarczy:
//	template <class c> struct Baz {mutable c in;};
//i wszedzie dalej pomijamy parametr bool ord, oraz w update wyroznione linie
	template <class c, bool b> struct Baz {
		mutable int size;
		mutable c in;
		operator int() const {return size;}
		void reset() const {size = 1;}
		void inc(int x) const {size += x;}
	};
	template <class c> struct Baz <c, 0> {
		mutable c in;
		void reset() const {}
		void inc(const Baz&) const {}
	};
template <class Op, bool ord> struct Foo {
//W C++11/14 trzeba: template <class A, class B, class C, class D> struct Bar : tree_order_statistics_node_update<A,B,C,D> {
	template <class... X> struct Bar : tree_order_statistics_node_update<X...> {
		using T = typename Op::T;
		using metadata_type = Baz<T, ord>;
		template <class c, class d> void operator()(c n, d end) const {
			n.V = Op::conv(**n);
			n.get_metadata().reset(); //Tylko jak potrzebujemy ordered_seta
			auto l = n.L, r = n.R;
			if (l != end) {
				n.V = Op::mer(l.V, n.V);
				n.get_metadata().inc(l.get_metadata()); //j.w.
			}
			if (r != end) {
				n.V = Op::mer(n.V, r.V);
				n.get_metadata().inc(r.get_metadata()); //j.w.
			}
		}
	};
};
template <class c, class k, class Op, class cmp = less<c>, bool ord = false> 
struct seg_map : tree<c, k, cmp, rb_tree_tag, Foo<Op, ord>::template Bar, Mal<c>> { //Jesli nie uzywamy structa Mal, to po prostu pomijamy ostatni parametr
	using T = typename Op::T;    using C = typename seg_map::const_iterator;
	using N = typename seg_map::node_const_iterator;
	T mer(const T&a, const T&b, bool d) const { return d ? Op::mer(a, b) : Op::mer(b, a); }
	N go(N n, bool d) const {return d ? n.R : n.L;}
	T whole() const { return this->empty() ? Op::neu() : root.V; }
	T read(C it, bool d) const {
		N n = from_it(it);
		T ans = Op::neu();
		if (go(n, d) != none) ans = go(n, d).V;
		while (n != root) {
			N p = P(n);
			if (go(p, !d) == n) {
				ans = mer(ans, Op::conv(**p), d);
				if (go(p, d) != none) ans = mer(ans, go(p, d).V, d);
			}
			n = p;
		}
		return ans;
	}
	T read_pref(C it) const {//[begin, it)
		if (it == this->begin()) return Op::neu();
		if (it == this->end()) return whole();
		return read(it, 0);
	}
	T read_suf(C it) const {//[it, end)
		if (it == this->begin()) return whole();
		if (it == this->end()) return Op::neu();
		return read(--it, 1);
	}
//Dla l > r wynik jest nieokreslony, ale wykona sie w O(log n) i nie bedzie RE
	T read(C l, C r) const { //[l, r)
		if (l == this->begin()) return read_pref(r);
		if (r == this->end()) return read_suf(l);
		N b = from_it(--l), e = from_it(r);
		T B = Op::neu(), E = Op::neu();
		if (!anc(b, e) && e.L != none) E = e.L.V;
		if (!anc(e, b) && b.R != none) B = b.R.V;
		int d = dep(b) - dep(e);
		while (b != e) {
			bool D = d > 0;
			D ? d-- : d++;
			N &m = D ? b : e, &o = D ? e : b;
			T &v = D ? B : E;
			N p = P(m);
			if (p != o && go(p, !D) == m) {
				v = mer(v, Op::conv(**p), D);
				N u = go(p, D);
				if (u != none && u != o) v = mer(v, u.V, D);
			}
			m = p;
		}
		return mer(B, E, 1);
	}
	N P(N x) const {return {x.m_p_nd->m_p_parent};}
	N from_it(C x) const {return {x.m_p_nd};}
	int dep(N x) const {
		int ans = 0;
		while (x != root) {
			ans++;
			x = P(x);
		}
		return ans;
	}
	bool anc(N x, N y) const {
		for (;;) {
			if (x == y) return 1;
			if (x == root) return 0;
			x = P(x);
		}
	}
	template <class Fun> C get_side(C it, Fun pred, bool dir) const {
		T acc = Op::neu();
		N n = from_it(it);
		for (;;) {
			acc = mer(acc, **n, dir);
			if (!pred(acc)) return dir ? *n : ++*n;
			if (go(n, dir) != none) {
				T t1 = mer(acc, go(n, dir).V, dir);
				if (pred(t1)) acc = t1;
				else {
					n = go(n, dir);
					for (;;) {
						if (go(n, !dir) != none) {
							T t2 = mer(acc, go(n, !dir).V, dir);
							if (!pred(t2)) {
								n = go(n, !dir);
								continue;
							}
							acc = t2;
						}
						acc = mer(acc, **n, dir);
						if (!pred(acc)) return dir ? *n : ++*n;
						n = go(n, dir);
					}
				}
			}
			for (;;) {
				if (n == root) return dir ? this->end() : this->begin();
				N p = P(n);
				if (go(p, !dir) == n) {
					n = p;
					break;
				}
				n = p;
			}
		}
	}
//Zwraca najdalszy it taki, ze pred(read(beg, it)), lub it = beg, jesli takiego nie ma. Zaklada, ze jesli jakis przedzial spelnia pred, to jego podprzedzial tez
	template <class Fun> C get_right(C beg, Fun pred) const {
		if (beg == this->end()) return beg;
		return get_side(beg, pred, 1);
	}
	template <class Fun> C get_left(C end, Fun pred) const { //j.w, tylko z read(it, end)
		if (end == this->begin()) return end;
		return get_side(--end, pred, 0);
	}
//Jesli wartosci agregowane zaleza od typu ta ktory jest mapowanie, to po kazdej edycji wartosci (takze wrzuceniu nowej) nalezy wywolac update lub po wszystkich edycjach wywolac update_all
	void update(C pos) { 
		N n = from_it(pos);
		for (;;) {
			seg_map::node_update::operator()(n, none);
			if (n == root) break;
			n = P(n);
		}
	}
	void dfs(N n) {
		if (n == none) return;
		dfs(n.L); dfs(n.R);
		seg_map::node_update::operator()(n, none);
	}
	void update_all() { dfs(root); }
};
template <class c, class Op, class cmp=less<c>, bool ord = false>
using seg_set = seg_map<c, null_type, Op, cmp, ord>;
struct Sum { //Przykladowy typ definiujacy operacje
	using T = array<ll, 2>; //typ wyniku dla przedzialu
	static T neu() {return {0, 0};}; //element neutralny dzialania
//rzutuje typ wartosci na typ wynikowy (w przypadku mapy para: klucz, wartosc)
	static T conv(pii x) { return x.first % 2 ? T{0, x.second} : T{x.second, 0}; }
	static T mer(T a, T b) {return {(a[0] + b[0]) % mod, (a[1] + b[1]) % mod};}
};
//Zeby sie skompilowalo z flaga -D_GLIBCXX_DEBUG, to typ trzymany w kontenerze (tylko typ klucza dla mapy) musi miec zdefiniowany operator<<(ostream &, nasz_typ), przy czym, jesli ten typ jest w namespace std, to operator tez musi byc. 

void solve() {
	int n;
	scanf("%d", &n);
	seg_map<int, int, Sum> dp;
	auto inc = [&](int x, int val) {
		auto [it, added] = dp.insert(pii(x, val));
		if (!added)
			(it->second += val) %= mod;
		dp.update(it);
	};
	inc(0, 1);
	int sum = 0;
	REP(i, n) {
		int x;
		scanf("%d", &x);
		(sum += x) %= mod;
		auto it = dp.upper_bound(sum);
		auto bef = dp.read(dp.begin(), it);
		auto whole = dp.whole();
		int curr = fix(bef[sum & 1] + whole[(sum & 1) ^ 1] - bef[(sum & 1) ^ 1], mod);
		debug(imie(x), imie(sum), imie(dp), imie(bef), imie(whole), imie(curr));
		if (i == n - 1) printf("%d\n", curr);
		else inc(sum, curr);
	}
}
int main() {
	// unt seed = TIME; debug(imie(seed));srand(seed);
	int t = 1;
	// scanf("%d", &t);
	REP(_, t) solve();
	exit(0);
}
//#STAY AT HOME