#include <bits/stdc++.h> using namespace std; using LL = long long; #define FOR(i, l, r) for(int i = (l); i <= (r); ++i) #define REP(i, n) FOR(i, 0, (n) - 1) #define ssize(x) int(x.size()) template<class A, class B> auto& operator<<(ostream &o, pair<A, B> p) { return o << '(' << p.first << ", " << p.second << ')'; } template<class T> auto operator<<(ostream &o, T x) -> decltype(x.end(), o) { o << '{'; int i = 0; for(auto e : x) o << (", ")+2*!i++ << e; return o << '}'; } #ifdef DEBUG #define debug(x...) cerr << "[" #x "]: ", [](auto... $) {((cerr << $ << "; "), ...); }(x), cerr << '\n' #else #define debug(...) {} #endif template<int mod> struct modular { int val; modular() { val = 0; } modular(const LL& v) { val = int((-mod <= v && v <= mod) ? (int) v : v % mod); if(val < 0) val += mod; } int to_int() { return val; } friend ostream& operator<<(ostream &os, const modular &a) { return os << a.val; } friend istream& operator>>(istream &is, modular &a) { return is >> a.val; } friend bool operator==(const modular &a, const modular &b) { return a.val == b.val; } friend bool operator!=(const modular &a, const modular &b) { return !(a == b); } friend bool operator<(const modular &a, const modular &b) { return a.val < b.val; } friend bool operator<=(const modular &a, const modular &b) { return a.val <= b.val; } modular operator-() const { return modular(-val); } modular& operator+=(const modular &m) { if((val += m.val) >= mod) val -= mod; return *this; } modular& operator-=(const modular &m) { if((val -= m.val) < 0) val += mod; return *this; } modular& operator*=(const modular &m) { val = (LL) val * m.val % mod; return *this; } friend modular qpow(modular a, LL n) { if(n == 0) return 1; if(n % 2 == 1) return qpow(a, n - 1) * a; return qpow(a * a, n / 2); } friend modular inv(const modular &a) { assert(a != 0); return qpow(a, mod - 2); } modular& operator/=(const modular &m) { return (*this) *= inv(m); } modular operator++(int) { modular res = (*this); (*this) += 1; return res; } friend modular operator+(modular a, const modular &b) { return a += b; } friend modular operator-(modular a, const modular &b) { return a -= b; } friend modular operator*(modular a, const modular &b) { return a *= b; } friend modular operator/(modular a, const modular &b) { return a /= b; } }; using mint = modular<int(1e9 + 7)>; // using mint = modular<998244353>; struct Fenwick { vector<mint> s; Fenwick(int n = 0) : s(n) {} void update(int pos, mint val) { for(; pos < ssize(s); pos |= pos + 1) s[pos] += val; } mint query(int pos) { mint ret = 0; for(pos++; pos > 0; pos &= pos - 1) ret += s[pos - 1]; return ret; } mint query(int l, int r) { return query(r) - query(l - 1); } }; int main() { cin.tie(0)->sync_with_stdio(0); int n; cin >> n; vector<int> a(n); REP(i, n) cin >> a[i]; mint sum = 0; vector<int> sums = {0}; REP(i, n) { sum += a[i]; sums.emplace_back(sum.to_int()); } sort(sums.begin(), sums.end()); auto scale = [&](mint x) { auto it = lower_bound(sums.begin(), sums.end(), x); return (int) distance(sums.begin(), it); }; array trees = { Fenwick(n + 2), Fenwick(n + 2) }; trees[0].update(0, 1); sum = 0; REP(i, n) { sum += a[i]; int r = (sum.to_int() % 2); mint dp = trees[r].query(scale(sum)) + trees[r ^ 1].query(scale(sum) + 1, n + 1); if(i == n - 1) { cout << dp << "\n"; return 0; } trees[r].update(scale(sum), dp); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | #include <bits/stdc++.h> using namespace std; using LL = long long; #define FOR(i, l, r) for(int i = (l); i <= (r); ++i) #define REP(i, n) FOR(i, 0, (n) - 1) #define ssize(x) int(x.size()) template<class A, class B> auto& operator<<(ostream &o, pair<A, B> p) { return o << '(' << p.first << ", " << p.second << ')'; } template<class T> auto operator<<(ostream &o, T x) -> decltype(x.end(), o) { o << '{'; int i = 0; for(auto e : x) o << (", ")+2*!i++ << e; return o << '}'; } #ifdef DEBUG #define debug(x...) cerr << "[" #x "]: ", [](auto... $) {((cerr << $ << "; "), ...); }(x), cerr << '\n' #else #define debug(...) {} #endif template<int mod> struct modular { int val; modular() { val = 0; } modular(const LL& v) { val = int((-mod <= v && v <= mod) ? (int) v : v % mod); if(val < 0) val += mod; } int to_int() { return val; } friend ostream& operator<<(ostream &os, const modular &a) { return os << a.val; } friend istream& operator>>(istream &is, modular &a) { return is >> a.val; } friend bool operator==(const modular &a, const modular &b) { return a.val == b.val; } friend bool operator!=(const modular &a, const modular &b) { return !(a == b); } friend bool operator<(const modular &a, const modular &b) { return a.val < b.val; } friend bool operator<=(const modular &a, const modular &b) { return a.val <= b.val; } modular operator-() const { return modular(-val); } modular& operator+=(const modular &m) { if((val += m.val) >= mod) val -= mod; return *this; } modular& operator-=(const modular &m) { if((val -= m.val) < 0) val += mod; return *this; } modular& operator*=(const modular &m) { val = (LL) val * m.val % mod; return *this; } friend modular qpow(modular a, LL n) { if(n == 0) return 1; if(n % 2 == 1) return qpow(a, n - 1) * a; return qpow(a * a, n / 2); } friend modular inv(const modular &a) { assert(a != 0); return qpow(a, mod - 2); } modular& operator/=(const modular &m) { return (*this) *= inv(m); } modular operator++(int) { modular res = (*this); (*this) += 1; return res; } friend modular operator+(modular a, const modular &b) { return a += b; } friend modular operator-(modular a, const modular &b) { return a -= b; } friend modular operator*(modular a, const modular &b) { return a *= b; } friend modular operator/(modular a, const modular &b) { return a /= b; } }; using mint = modular<int(1e9 + 7)>; // using mint = modular<998244353>; struct Fenwick { vector<mint> s; Fenwick(int n = 0) : s(n) {} void update(int pos, mint val) { for(; pos < ssize(s); pos |= pos + 1) s[pos] += val; } mint query(int pos) { mint ret = 0; for(pos++; pos > 0; pos &= pos - 1) ret += s[pos - 1]; return ret; } mint query(int l, int r) { return query(r) - query(l - 1); } }; int main() { cin.tie(0)->sync_with_stdio(0); int n; cin >> n; vector<int> a(n); REP(i, n) cin >> a[i]; mint sum = 0; vector<int> sums = {0}; REP(i, n) { sum += a[i]; sums.emplace_back(sum.to_int()); } sort(sums.begin(), sums.end()); auto scale = [&](mint x) { auto it = lower_bound(sums.begin(), sums.end(), x); return (int) distance(sums.begin(), it); }; array trees = { Fenwick(n + 2), Fenwick(n + 2) }; trees[0].update(0, 1); sum = 0; REP(i, n) { sum += a[i]; int r = (sum.to_int() % 2); mint dp = trees[r].query(scale(sum)) + trees[r ^ 1].query(scale(sum) + 1, n + 1); if(i == n - 1) { cout << dp << "\n"; return 0; } trees[r].update(scale(sum), dp); } } |