1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#include <bits/stdc++.h>
#define REP(i,n) for (int _n=(n), i=0;i<_n;++i)
#define FOR(i,a,b) for (int i=(a),_b=(b);i<=_b;++i)
#define FORD(i,a,b) for (int i=(a),_b=(b);i>=_b;--i)
#define TRACE(x) std::cerr << "TRACE(" #x ")" << std::endl;
#define DEBUG(x) std::cerr << #x << " = " << (x) << std::endl;
using std::int64_t;

void init_io() {
  std::cin.tie(nullptr);
  std::ios::sync_with_stdio(false);
}

// floor log depth <= floor log 200,000 = 17
constexpr int max_log_depth = 17;

struct Node {
  // 500,000 edges: 2 MB total len
  std::vector<int> out_nodes;

  // 500,000 nodes ~= 12 MB total used
  std::set<int> out_trees;

  // only non-empty for not enabled yet nodes
  // contains values already enabled
  std::vector<int> nodes_to_link_when_enabled;

  // tree linkage
  Node *child = nullptr;
  Node *sibling = nullptr;

  // ancestors[0] = parent
  // ancestors[i] = up 2^i steps (lazily evaluated for i > 0)
  // root iff num_ancestors == 0
  int num_ancestors = 0;
  Node *ancestors[max_log_depth + 1] = {};

  // only relevant for roots
  int tree_id = -1;
  int tree_size = 0;

  // nodes with edges to this tree
  // 500,000 nodes ~= 12 MB
  std::set<int> into_tree;

  // only non-zero for cycle roots
  int cycle_len = 0;
};

// 200,000 * 320 = 64 MB
std::vector<Node> nodes;

// 100,000 * 320 = 32 MB
std::vector<Node> cycle_nodes;

// number of enabled arenas
int num_enabled = 0;
// for cycles, add cycle_len-2 for each node, (except cycle root)
int64_t result = 0;

// nodes containing a single out_trees, with both sides enabled
std::vector<int> nodes_to_link;

void read_input() {
  int n; std::cin >> n;
  nodes.resize(n);
  cycle_nodes.reserve(n / 2);
  REP(node_id, n) {
    Node *node = &nodes[node_id];
    node->tree_id = node_id;
    node->tree_size = 1;

    int num_edges;
    std::cin >> num_edges;
    node->out_nodes.reserve(num_edges);
    bool self_cycle = false;
    REP(edge_idx, num_edges) {
      int dest;
      std::cin >> dest;
      --dest;
      node->out_nodes.push_back(dest);
      if (dest == node_id) self_cycle = true;
    }
    if (self_cycle) {
      // self cycle is equivalent to having no edges
      node->out_nodes.clear();
    } else {
      for (int x : node->out_nodes) {
        node->out_trees.insert(x);
        nodes[x].into_tree.insert(node_id);
      }
    }
  }
}

void fill_ancestors(Node *node) {
  if (node->num_ancestors == 0) return;
  for (;;) {
    Node *a = node->ancestors[node->num_ancestors - 1];
    fill_ancestors(a);
    if (node->num_ancestors > a->num_ancestors) break;
    assert(node->num_ancestors <= max_log_depth);
    node->ancestors[node->num_ancestors] = a->ancestors[node->num_ancestors - 1];
    ++node->num_ancestors;
  }
}

std::pair<int, Node*> find_depth_and_root(Node *node) {
  // fills the whole jump path to root
  fill_ancestors(node);

  int depth = 0;
  while (node->num_ancestors != 0) {
    depth += 1 << (node->num_ancestors - 1);
    node = node->ancestors[node->num_ancestors - 1];
  }
  return {depth, node};
}

Node *go_up(Node *a, int dist) {
  // a already has filled ancestors
  FORD(i, max_log_depth, 0) {
    if (dist >= (1 << i)) {
      assert(a->num_ancestors > i);
      a = a->ancestors[i];
      fill_ancestors(a);
      dist -= (1 << i);
    }
  }
  return a;
}

std::pair<int, Node*> least_common_ancestor(Node *a, int depth_a, Node *b, int depth_b) {
  // a and b already have filled ancestors
  // they must be in the same tree
  if (depth_a > depth_b) {
    a = go_up(a, depth_a - depth_b);
    depth_a = depth_b;
    fill_ancestors(a);
  } else if (depth_b > depth_a) {
    b = go_up(b, depth_b - depth_a);
    depth_b = depth_a;
    fill_ancestors(b);
  }
  if (a==b) return {depth_a, a};

  FORD(i, max_log_depth, 0) {
    if (depth_a >= (1<<i)) {
      assert(a->num_ancestors > i);
      assert(b->num_ancestors > i);
      if (a->ancestors[i] != b->ancestors[i]) {
        a = a->ancestors[i];
        b = b->ancestors[i];
        fill_ancestors(a);
        fill_ancestors(b);
        depth_a -= 1 << i;
        depth_b -= 1 << i;
      }
    }
  }
  assert(a->num_ancestors > 0);
  assert(b->num_ancestors > 0);
  assert(a->ancestors[0] == b->ancestors[0]);
  a = a->ancestors[0];
  depth_a -= 1;
  return {depth_a, a};
}

void rename_tree(Node *root, int new_tree_id) {
  for (const int node_id : root->into_tree) {
    Node *node = &nodes[node_id];
    const auto size_before = node->out_trees.size();
    auto it = node->out_trees.find(root->tree_id);
    assert(it != node->out_trees.end());
    node->out_trees.erase(it);
    node->out_trees.insert(new_tree_id);
    if (node_id < num_enabled && node->out_trees.size() == 1 && size_before != 1) {
      // it is pointing at an enabled tree because we wouldn't be renaming to it otherwise
      nodes_to_link.push_back(node_id);
    }
  }
  root->tree_id = new_tree_id;
}

void link_to_parent(Node *p, Node *parent) {
  p->num_ancestors = 1;
  p->ancestors[0] = parent;
  p->sibling = parent->child;
  parent->child = p;
}

void unlink_from_parent(Node *p, Node *parent) {
  Node **q = &parent->child;
  while (*q != p) {
    assert(*q);
    q = &(*q)->sibling;
  }
  *q = p->sibling;
  p->sibling = nullptr;
  p->num_ancestors = 0;
}

void link_trees(Node *root, Node *parent, int depth, Node *parent_root) {
  assert(root != parent_root);
  assert(root->num_ancestors == 0);

  // if we are linking to a cycle, instead link to an arbitrary point on the cycle
  if (parent == parent_root && parent_root->cycle_len != 0) {
    parent = parent_root->child;
    ++depth;
  }

  // merge tree ids
  if (root->into_tree.size() < parent_root->into_tree.size()) {
    rename_tree(root, parent_root->tree_id);
    for (const int node_id : root->into_tree) {
      parent_root->into_tree.insert(node_id);
    }
    root->into_tree.clear();
  } else {
    rename_tree(parent_root, root->tree_id);
    for (const int node_id : parent_root->into_tree) {
      root->into_tree.insert(node_id);
    }
    parent_root->into_tree = std::move(root->into_tree);
  }

  link_to_parent(root, parent);

  int new_nodes_seen = depth + 1;
  if (parent_root->cycle_len != 0) {
    new_nodes_seen += parent_root->cycle_len - 2;
  }
  result += int64_t(root->tree_size) * int64_t(new_nodes_seen);

  parent_root->tree_size += root->tree_size;
}

// (node, depth)
// 1.6 MB
std::vector<std::pair<Node*, int>> walk_tree_stack;

// return tree size
int walk_tree_limit_ancestors(Node *root) {
  walk_tree_stack.clear();
  walk_tree_stack.emplace_back(root, 0);
  int tree_size = 0;
  while (!walk_tree_stack.empty()) {
    auto [node, depth] = walk_tree_stack.back();
    walk_tree_stack.pop_back();
    ++tree_size;
    while (node->num_ancestors != 0 && (1 << (node->num_ancestors - 1)) > depth) {
      --node->num_ancestors;
    }
    for (Node *p = node->child; p; p = p->sibling) {
      walk_tree_stack.emplace_back(p, depth + 1);
    }
  }
  return tree_size;
}

void create_cycle(Node *cycle_start, Node *root, int depth) {
  assert(depth >= 1);

  cycle_nodes.emplace_back();
  Node *cycle_root = &cycle_nodes.back();

  cycle_root->tree_size = root->tree_size + 1;
  cycle_root->tree_id = root->tree_id;
  cycle_root->into_tree = std::move(root->into_tree);
  cycle_root->cycle_len = depth + 1;

  Node *p = cycle_start;
  while (p) {
    Node *parent = p->num_ancestors == 0 ? nullptr : p->ancestors[0];
    if (parent) {
      unlink_from_parent(p, parent);
    }
    int subtree_size = walk_tree_limit_ancestors(p);
    result += int64_t(subtree_size) * int64_t(cycle_root->cycle_len - 1 - depth);

    link_to_parent(p, cycle_root);

    p = parent;
    --depth;
  }
  assert(depth == -1);
}

void link_root(const int root_id) {
  assert(root_id < num_enabled);
  Node *root = &nodes[root_id];
  assert(root->num_ancestors == 0);

  assert(root->out_trees.size() == 1);
  const int parent_tree_id = *root->out_trees.begin();

  auto out_nodes_iter = root->out_nodes.begin();
  assert(out_nodes_iter != root->out_nodes.end());
  Node *parent = &nodes[*out_nodes_iter++];
  auto [depth, parent_root] = find_depth_and_root(parent);
  assert(parent_root->tree_id == parent_tree_id);

  while (out_nodes_iter != root->out_nodes.end()) {
    Node *parent2 = &nodes[*out_nodes_iter++];
    const auto [depth2, parent_root2] = find_depth_and_root(parent2);
    assert(parent_root == parent_root2);
    const auto [depth_lca, lca] = least_common_ancestor(parent, depth, parent2, depth2);
    parent = lca;
    depth = depth_lca;
  }

  root->out_nodes.clear();
  root->out_trees.clear();
  auto into_tree_iter = parent_root->into_tree.find(root_id);
  assert(into_tree_iter != parent_root->into_tree.end());
  parent_root->into_tree.erase(into_tree_iter);

  if (parent == root) {
    // nothing, cycle of length 1
  } else if (parent_root == root) {
    create_cycle(parent, root, depth);
  } else {
    link_trees(root, parent, depth, parent_root);
  }
}

void debug_tree(Node *node, int indent);

void debug_children(Node *node, int indent) {
  for (Node *child = node->child; child; child = child->sibling) {
    debug_tree(child, indent);
  }
}

void debug_tree(Node *node, int indent) {
  REP(i, indent) std::cerr << ' ';
  std::cerr << (node - &nodes[0] + 1) << '\n';
  debug_children(node, indent+1);
}

void debug_trees() {
  std::cerr << "--- trees begin, num_enabled = " << num_enabled << "\n";
  for (Node &cycle_node : cycle_nodes) {
    std::cerr << "C\n";
    debug_children(&cycle_node, 1);
  }
  for (Node &node : nodes) {
    if (node.num_ancestors == 0) {
      debug_tree(&node, 0);
    }
  }
  std::cerr << "--- trees end\n";
}

void enable_one() {
  ++num_enabled;
  {
    Node *node = &nodes[num_enabled - 1];
    nodes_to_link.insert(
        nodes_to_link.end(),
        node->nodes_to_link_when_enabled.begin(),
        node->nodes_to_link_when_enabled.end());
    node->nodes_to_link_when_enabled.clear();
    if (node->out_trees.size() == 1) {
      int node_id2 = *node->out_trees.begin();
      if (node_id2 < num_enabled) {
        nodes_to_link.push_back(num_enabled - 1);
      } else {
        nodes[node_id2].nodes_to_link_when_enabled.push_back(num_enabled - 1);
      }
    }
  }

  while (!nodes_to_link.empty()) {
    const int node_id = nodes_to_link.back();
    nodes_to_link.pop_back();
    assert(node_id < num_enabled);
    link_root(node_id);
  }
}

int main() {
  init_io();
  read_input();
  walk_tree_stack.reserve(nodes.size());
  while (num_enabled < int(nodes.size())) {
    enable_one();
    if (num_enabled > 1) std::cout << ' ';
    std::cout << result;
  }
  std::cout << '\n';
}