#include <bits/stdc++.h> //#pragma GCC optimize("Ofast") //#pragma GCC optimize ("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //szablon czesciowo skopiowany z profilu https://c...content-available-to-author-only...s.com/profile/Geothermal using namespace std; typedef long long LL; typedef long double LD; typedef pair<int, int> pii; typedef pair<LL,LL> pll; typedef pair<LD,LD> pdd; typedef vector<int> vi; typedef vector<bool> vb; typedef vector<LD> vld; typedef vector<LL> vll; typedef vector<pii> vpii; typedef vector<pll> vpll; template<class T> using pq = priority_queue<T>; template<class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define rep(i, a, b) for (int i=a; i<(b); i++) #define repd(i,a,b) for (int i = (a); i >= b; i--) #define sz(x) (int)(x).size() #define pb push_back #define st first #define nd second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() #define memo(x) memset(x, 0, sizeof(x)) #define debug(x) cerr << x << " " mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); LL losuj(LL a, LL b){ return a+rng()%(b-a+1);} void solve(){ int n; cin >> n; vi t(n); set<pii>S; rep(i,0,n){ cin >> t[i]; S.insert({t[i], i}); } cout << 2*n+1 << " "; int l=n+1, r=0, dl=0, odl=0; LL ans = 0; rep(i,1,n+1){ if((i+2)/2>dl){ dl++; l = min(l, (*(--S.end())).nd); r = max(r, (*(--S.end())).nd); S.erase(--S.end()); odl = r-l+1; } if(i==1){ ans++; continue; } if(odl>i) continue; int tmp = i - odl +1, d = i - odl; int ld = max(0, d - l), rd = max(0, d - n+1 + r); ans += tmp - ld - rd; //int ld = max(0, r-i+1) //int ld = max(0, r-i+1), rd = min(n-1,l+i-1); //ans += rd-ld+1-odl; //cout << i << " " << tmp << " " << ld << " " << rd << " " << odl << " "<< ans << "\n"; } cout << ans << "\n"; } int main(){ ios_base::sync_with_stdio(0); cin.tie(0); int t = 1; //cin >> t; while (t--) solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | #include <bits/stdc++.h> //#pragma GCC optimize("Ofast") //#pragma GCC optimize ("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //szablon czesciowo skopiowany z profilu https://c...content-available-to-author-only...s.com/profile/Geothermal using namespace std; typedef long long LL; typedef long double LD; typedef pair<int, int> pii; typedef pair<LL,LL> pll; typedef pair<LD,LD> pdd; typedef vector<int> vi; typedef vector<bool> vb; typedef vector<LD> vld; typedef vector<LL> vll; typedef vector<pii> vpii; typedef vector<pll> vpll; template<class T> using pq = priority_queue<T>; template<class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define rep(i, a, b) for (int i=a; i<(b); i++) #define repd(i,a,b) for (int i = (a); i >= b; i--) #define sz(x) (int)(x).size() #define pb push_back #define st first #define nd second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() #define memo(x) memset(x, 0, sizeof(x)) #define debug(x) cerr << x << " " mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); LL losuj(LL a, LL b){ return a+rng()%(b-a+1);} void solve(){ int n; cin >> n; vi t(n); set<pii>S; rep(i,0,n){ cin >> t[i]; S.insert({t[i], i}); } cout << 2*n+1 << " "; int l=n+1, r=0, dl=0, odl=0; LL ans = 0; rep(i,1,n+1){ if((i+2)/2>dl){ dl++; l = min(l, (*(--S.end())).nd); r = max(r, (*(--S.end())).nd); S.erase(--S.end()); odl = r-l+1; } if(i==1){ ans++; continue; } if(odl>i) continue; int tmp = i - odl +1, d = i - odl; int ld = max(0, d - l), rd = max(0, d - n+1 + r); ans += tmp - ld - rd; //int ld = max(0, r-i+1) //int ld = max(0, r-i+1), rd = min(n-1,l+i-1); //ans += rd-ld+1-odl; //cout << i << " " << tmp << " " << ld << " " << rd << " " << odl << " "<< ans << "\n"; } cout << ans << "\n"; } int main(){ ios_base::sync_with_stdio(0); cin.tie(0); int t = 1; //cin >> t; while (t--) solve(); return 0; } |