1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <queue>
#include <bitset>
#include <utility>
#include <stack>
#include <unordered_set>
#include <tuple>

#include <functional>

namespace hash_tuple {
template <typename TT> struct hash {
    size_t operator()(TT const &tt) const { return std::hash<TT>()(tt); }
};

// from boost (functional/hash):
// see http://www.boost.org/doc/libs/1_35_0/doc/html/hash/combine.html template
template <class T> inline void hash_combine(std::size_t &seed, T const &v) {
    seed ^= hash_tuple::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}

// Recursive template code derived from Matthieu M.
template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
struct HashValueImpl {
    void operator()(size_t &seed, Tuple const &tuple) const {
        HashValueImpl<Tuple, Index - 1>{}(seed, tuple);
        hash_combine(seed, std::get<Index>(tuple));
    }
};
template <class Tuple> struct HashValueImpl<Tuple, 0> {
    void operator()(size_t &seed, Tuple const &tuple) const {
        hash_combine(seed, std::get<0>(tuple));
    }
};

template <typename... TT> struct hash<std::tuple<TT...>> {
    size_t operator()(std::tuple<TT...> const &tt) const {
        size_t seed = 0;
        HashValueImpl<std::tuple<TT...>>{}(seed, tt);
        return seed;
    }
};
// auxiliary generic functions to create a hash value using a seed
template <typename T> inline void hash_val(std::size_t &seed, const T &val) {
    hash_combine(seed, val);
}

template <typename T, typename... Types>
inline void hash_val(std::size_t &seed, const T &val, const Types &... args) {
    hash_combine(seed, val);
    hash_val(seed, args...);
}

template <typename... Types>
inline std::size_t hash_val(const Types &... args) {
    std::size_t seed = 0;
    hash_val(seed, args...);
    return seed;
}

struct pair_hash {
    template <class T1, class T2>
    std::size_t operator()(const std::pair<T1, T2> &p) const {
        return hash_val(p.first, p.second);
    }
};

struct tuple_hash {
    template <class T1, class T2, class T3>
    std::size_t operator()(const std::tuple<T1, T2, T3> &t) const {
        return hash_val(std::get<0>(t), std::get<1>(t), std::get<2>(t));
    }
};

} // namespace hash_tuple


using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define MP make_pair
#define FOR(v,p,k) for(int v=(p);v<=(k);++v)
#define FORD(v,p,k) for(int v=(p);v>=(k);--v)
#define REP(i,n) for(int i=0;i<(n);++i)
#define VAR(v,i) __typeof(i) v=(i)
#define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i)
#define PB push_back
#define ST first
#define ND second
#define SIZE(x) (int)x.size()
#define ALL(c) c.begin(),c.end()

#define ODD(x) ((x)%2)
#define EVEN(x) (!(ODD(x)))

typedef tuple<int, int, int> TIII;

int main() {
    VI R(3), r(3), candv(3);
    scanf("%d %d %d\n", &R[0], &R[1], &R[2]);
    scanf("%d %d %d\n", &r[0], &r[1], &r[2]);

    int C = R[2];
    VI res(C + 1, -1);

    unordered_set<TIII, hash_tuple::tuple_hash> visited;
    vector<TIII> curr, next;
    curr.PB(make_tuple(r[0], r[1], r[2]));

    int iter = -1;    
    while (!curr.empty()) {
        ++iter;
        FOREACH(i, curr) {
            tie(r[0], r[1], r[2]) = *i;
            FOREACH(it, r) {
                int x = *it;
                if (res[x] == -1) {
                    res[x] = iter;
                }
            }
            visited.insert(*i);
            REP(i, 3) {
                REP(j, 3) {
                    if ((i == j) || (r[i] == R[i]) || r[j] == 0) continue;
                    candv[i] = min(R[i], r[i] + r[j]);
                    candv[j] = max(0, r[j] - (R[i] - r[i]));
                    candv[3 - i - j] = r[3 - i - j];
                    TIII cand = make_tuple(candv[0], candv[1], candv[2]);
                    if (visited.count(cand) == 0) {
                        next.PB(cand);
                    }
                }
            }
        }
        curr.clear();
        swap(curr, next);
    }
    REP(i, C + 1) {
        printf("%d%s", res[i], (i <= C) ? " " : "");
    }
    return 0;
}