1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include <bits/stdc++.h>
using namespace std;

#define FOR(i, n) for (int i = 0; i < int(n); ++i)
#define FO(i, a, b) for (int i = (a); i < int(b); ++i)
#define OF(i, a, b) for (int i = (b)-1; i >= int(a); --i)

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((b) < (a) ? (a) : (b))

#define REMIN(a, b) ((a) = min(a, b))
#define REMAX(a, b) ((a) = max(a, b))

#define ALL(c) (c).begin(), (c).end()

#define SQR(x) ((x) * (x))

#define PRINT(x) cerr << #x << " == " << x << endl;

#define ZERO(x) memset(x, 0, sizeof(x));

#define endl '\n'

using LD = long double;

#define ASS(x)                                                                 \
  if (!(x))                                                                    \
    cerr << "ASSERT FAILED " #x << " " << __FILE__ << ':' << __LINE__ << endl;

//

const bool READ_NUM_TEST_CASES = false;

const int N = 200'000 + 9;
const int NN = 1024 * 256;

struct Tree {
  int max_hole = 0;
  int max_pref = 0;
  int max_suff = 0;
};

Tree tree[2 * NN];

void tree_set(int x, bool last = false) {
  x += NN;
  tree[x].max_hole = tree[x].max_pref = tree[x].max_suff =
      last ? INT_MAX / 2 : 1;
  int width = 1;
  while (x) {
    x /= 2;

    tree[x].max_hole = max({tree[x * 2].max_hole, tree[x * 2 + 1].max_hole,
                            tree[x * 2].max_suff + tree[x * 2 + 1].max_pref});

    tree[x].max_suff = tree[x * 2 + 1].max_hole == width
                           ? tree[x * 2].max_suff + width
                           : tree[x * 2 + 1].max_suff;

    tree[x].max_pref = tree[x * 2].max_hole == width
                           ? tree[x * 2 + 1].max_pref + width
                           : tree[x * 2].max_pref;
    width *= 2;
  }
}

int tree_find(int x0, int len, int x, int a, int b) {
  // cerr << "tree_find" << endl;
  // PRINT(x0)
  // PRINT(len)
  // PRINT(x)
  // PRINT(a)
  // PRINT(b)
  // cerr << endl;
  // this_thread::sleep_for(100ms);

  int mid = (a + b) / 2;

  if (a + 1 == b) {
    if (tree[x].max_hole >= len)
      return a;
    else
      return INT_MAX;
  }

  if (x0 >= mid)
    return tree_find(x0, len, x * 2 + 1, mid, b);

  if (tree[x * 2].max_hole >= len) {
    auto r = tree_find(x0, len, x * 2, a, mid);
    if (r != INT_MAX)
      return r;
  }

  REMAX(x0, mid - tree[x * 2].max_suff);

  if ((mid - x0) + tree[x * 2 + 1].max_pref >= len)
    return x0;

  return tree_find(x0, len, x * 2 + 1, mid, b);
}

struct TC {
  int L;
  int vs[3];
  int v0;

  char lanes[3][N];
  LD res[N];

  int prev_free[N];
  int ride_until[N];
  int hole_fr[N];

  void solve() {
    cin >> L >> v0;
    FOR(i, 3) cin >> vs[i];

    FOR(i, 3) {
      string s;
      cin >> s;
      FOR(j, L) lanes[i][j] = (s[j] == '#');
      lanes[i][L] = 0;
    }

    lanes[2][0] = 0;

    FOR(j, L) {
      if (lanes[0][j])
        prev_free[j] = prev_free[j - 1];
      else
        prev_free[j] = j;
    }

    ride_until[L] = L;
    OF(j, 0, L) {
      if (lanes[0][j + 1])
        ride_until[j] = j;
      else
        ride_until[j] = ride_until[j + 1];
    }

    hole_fr[L] = INT_MAX / 2;
    OF(j, 0, L) {
      if (lanes[2][j])
        hole_fr[j] = 0;
      else
        hole_fr[j] = hole_fr[j + 1] + 1;
    }

    FOR(j, L) if (!lanes[2][j]) tree_set(j);
    tree_set(L, true);

    LD time = 0;
    int x = 0;

    int last = -1;
    FOR(j, L) if (lanes[1][j]) last = j;

    while (x < last + 1) {
      int next_x = x;
      while (lanes[1][next_x + 1] == 0 && next_x < last + 1)
        ++next_x;

      if (next_x != x) {
        time += LD(next_x - x) / (v0 - vs[1]);
        x = next_x;
        continue;
      }

      next_x += 1;
      while (lanes[1][next_x])
        ++next_x;

      // cerr << endl
      //      << "time " << time << " jump " << x << " -> " << next_x << endl;

      const LD EPS = 1e-12;

      // up
      LD up_time = time;
      LD up_time_diff = 0;

      LD up_x = x - time * (vs[0] - vs[1]);
      if (lanes[0][max(0, int(up_x + EPS))] ||
          lanes[0][max(0, int(up_x + 1 - EPS))]) {
        up_time_diff = (up_x - prev_free[int(up_x + EPS)]) / (vs[0] - vs[1]);
        up_time += up_time_diff;
        up_x = x - up_time * (vs[0] - vs[1]);
      }

      LD collide_time = (ride_until[int(up_x + EPS)] - up_x) / (v0 - vs[0]);
      LD base_reach_time = LD(next_x - x) / (v0 - vs[1]);

      // PRINT(collide_time);
      // PRINT(base_reach_time);

      LD reach_time = base_reach_time + up_time_diff;

      // must wait in top lane
      if (reach_time > collide_time) {
        // LD collide_x = x + collide_time * (v0 - vs[1]);
        reach_time = collide_time + (next_x - x - collide_time * (v0 - vs[1])) /
                                        (vs[0] - vs[1]);
      }

      up_time += reach_time;

      // down
      LD need_len = (next_x - x) + base_reach_time * (v0 - vs[2]);

      LD down_x = x + time * (vs[1] - vs[2]);

      LD down_time = time + base_reach_time;

      int need_fr = max(0, int(down_x + EPS));
      int need_to = down_x + need_len - EPS;

      bool need_to_wait = false;

      if (need_fr < L)
        need_to_wait = hole_fr[need_fr] < (need_to - need_fr + 1);

      if (need_to_wait) {
        // cerr << "down: need to wait" << endl;
        // cerr << "tree_find " << need_fr + 1 << " " << (int)(need_len + 1 -
        // EPS)
        //      << endl;
        int xx = tree_find(need_fr + 1, (int)(need_len + 1 - EPS), 1, 0, NN);

        // cerr << "tree_find " << need_fr + 1 << " " << (int)(need_len + 1 -
        // EPS)
        //      << " : " << xx << endl;

        auto must_wait = LD(xx - down_x) / (vs[1] - vs[2]);

        // cerr << "must wait " << must_wait << " until can move down" <<
        // endl;

        down_time = time + base_reach_time + must_wait;
      }

      // PRINT(down_time)
      // PRINT(up_time)

      time = min(down_time, up_time);
      x = next_x;
    }

    // ASS(x == last + 1);

    // PRINT(time);

    LD final_time = time;

    FOR(i, 3) {
      if (i == 1)
        continue;

      int last_car = -1;
      FOR(j, L) if (lanes[i][j]) last_car = j;

      LD x_left = (last_car + 1 - x) + time * (vs[i] - vs[1]);
      // PRINT(x_left)

      REMAX(final_time, time + x_left / (v0 - vs[i]));
    }

    cout << final_time << endl;
  }
};

int main() {
  ios_base::sync_with_stdio(0);
  cout.precision(20);
  cout << fixed;

  int num_cases = 1;
  if (READ_NUM_TEST_CASES)
    cin >> num_cases;

  FOR(i, num_cases) {
    TC tc;
    tc.solve();
  }

  return 0;
}