1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <list>

using namespace std;
#undef _HOME_
#ifdef _HOME_
    #define DEBUG(x) x
#else
    #define DEBUG(x)
#endif
#define REP(x,n) for(int x=0;x<(n);++x)
#define FOREACH(x,n) for(__typeof(n.begin()) x = (n).begin(); x != (n).end(); ++x)
#define RESULT(x) {cout<<(x);return 0;}

const int MAX_N = 100001;
typedef pair<int,int> PII;
int n;
string current;
string target;

struct Vertex {
	set<int> edges;
	void inline clear() {
		edges.clear();
	}
	int inline degree() {
		return edges.size();
	}
};

Vertex graph[MAX_N];

bool inline isLinear() {
	int deg1cnt=0;
	REP(x,n)
		if (graph[x].degree() > 2) {
			DEBUG(cerr<<"deg of "<<x<<" is "<<graph[x].degree()<<endl;)
			return false;
		}
		else if (graph[x].degree() == 1)
			++deg1cnt;
	DEBUG(cerr<<"deg1cnt = "<<deg1cnt<<endl;)
	return deg1cnt == 2;
}

int inline findOtherNeighbour(int v, int n) {
	for(const int& neighbour : graph[v].edges)
		if (n != neighbour)
			return neighbour;
	return -1;
}
bool solveLinearFrom(int start) {
	int prev=-1;
	char currentStartsFrom = current[start];
	char targetStartsFrom = target[start];
	int currentGroups = 0;
	int targetGroups = 0;
	int index=start;
	char currentGroup = -1;
	char targetGroup = -1;
	while(index != -1) {
		DEBUG(cerr<<"processing "<<index<<endl;)
		if (current[index] != currentGroup) {
			currentGroup = current[index];
			++currentGroups;
		}
		if (target[index] != targetGroup) {
			targetGroup = target[index];
			++targetGroups;
		}
		int index2 = findOtherNeighbour(index, prev);
		DEBUG(cerr<<"found neighbour("<<index<<","<<prev<<") -> "<<index2<<endl;)
		prev = index;
		index = index2;
	}
	DEBUG(cerr<<"current groups: "<<currentStartsFrom<<" "<<currentGroups<<endl;)
	DEBUG(cerr<<"target groups: "<<targetStartsFrom<<" "<<targetGroups<<endl;)
	if (currentStartsFrom == targetStartsFrom)
		return targetGroups <= currentGroups;
	else
		return targetGroups < currentGroups;
}

bool solveLinear() {
	int forcesCnt=0;
	REP(x,n) {
		if (graph[x].degree()==1) {
			DEBUG(cerr<<"leaf: "<<x<<endl;)
			return solveLinearFrom(x);
		}
	}
	cerr << "something went terribly wrong " << __LINE__ << endl;
	return true; // should never happen
}
bool inline has(const string& s, char c) {
	return s.find(c) != string::npos;
}
const int VALIDATE_PASS = 1;
const int VALIDATE_FAIL = -1;
int validate() {
	// maybe there's nothing to change
	if (current == target)
		return VALIDATE_PASS;
	// cannot produce color if it's not present on current state
	if (has(target, '1') && !has(current, '1'))
		return VALIDATE_FAIL;
	if (has(target, '0') && !has(current, '0'))
		return VALIDATE_FAIL;
	// cannot produce if there is no target group with length of 2
	bool anyGroup2 = false;
	REP(x,n)
		for(const int& neighbour : graph[x].edges)
			if (target[x] == target[neighbour]) {
				anyGroup2 = true;
				break;
			}
	if (!anyGroup2)
		return VALIDATE_FAIL;
	return 0;
}
bool test() {
	cin>>n>>current>>target;
	REP(x,n) {
		graph[x].clear();
	}
	int a,b;
	REP(x,n-1) {
		cin>>a>>b;
		graph[a-1].edges.insert(b-1);
		graph[b-1].edges.insert(a-1);
		DEBUG(cerr<<"added edge "<<a-1<<"-"<<b-1<<" - currently "<<graph[a-1].degree()<<"/"<<graph[b-1].degree()<<" edges"<<endl;)
	}
	int preResult = validate();
	if (preResult != 0)
		return preResult>0;
	if (isLinear()) {
		DEBUG(cerr<<"linear"<<endl;)
		return solveLinear();
	}
	DEBUG(cerr<<"non linear"<<endl;)
	if (n >= 5)
		return true;
	// if we're here, we have connection of 4 vertices connected like this
	//    A
	//   /|\
	//  / | \
	// B  C  D
	// we can solve it always if target A is not the only one of its color
	bool has0leaf = false;
	bool has1leaf;
	char rootColor;
	REP(x,n) {
		if (graph[x].degree() > 1)
			rootColor = target[x];
		else if (target[x] == '0')
			has0leaf = true;
		else
			has1leaf = true;
	}
	return rootColor == '0' ? has0leaf : has1leaf;
}

int t;
int main() {
	ios_base::sync_with_stdio(0);
	cin>>t;
	REP(x,t)
		cout << (test() ? "TAK" : "NIE") << endl;
	return 0;
}