#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> /* #pragma GCC target("avx2") #pragma GCC optimization("Ofast") #pragma GCC optimization("unroll-loops") */ using namespace __gnu_pbds; using namespace std; #define mp make_pair #define eb emplace_back #define pb push_back #define e1 first #define e2 second #define vt vector #define maxi(x,y) x=max(x,y) #define mini(x,y) x=min(x,y) #define size(x) (int)x.size() #define all(r) begin(r),end(r) #define fastio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0) #define cx real() #define cy imag() #define precision(x) setprecision(x)<<fixed #define time chrono::high_resolution_clock().now().time_since_epoch().count() #ifndef DEBUG #define DEBUG false #endif #define dbg if(DEBUG) typedef long long ll; typedef long double ld; typedef complex<long double> cplx; typedef unsigned int uint; typedef unsigned long long ull; typedef vt<int> vi; typedef vt<vi> vvi; typedef vt<bool> vb; typedef vt<vb> vvb; typedef vt<char> vc; typedef vt<vc> vvc; typedef vt<string> vs; typedef vt<vs> vvs; typedef vt<ll> vll; typedef vt<vll> vvll; typedef vt<ld> vld; typedef vt<vld> vvld; typedef vt<cplx> vcplx; typedef vt<vcplx> vvcplx; template<typename T> using ordset=tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; template<typename T1,typename T2> ostream& operator<<(ostream &os,pair<T1,T2>& VAR){ os<<"("<<VAR.e1<<","<<VAR.e2<<")"; return os; } template<typename T> ostream& operator<<(ostream& os,vt<T>& VAR){ os<<"["; for(int i=0;i<size(VAR)-1;i++) os<<VAR[i]<<","; if(size(VAR)) os<<VAR.back(); os<<"]"; return os; } template<typename T> istream& operator>>(istream& is,complex<T>& VAR){ T value; is>>value; VAR.real(value); is>>value; VAR.imag(value); return is; } const bool TESTS=false; /* dp[i] -> minimal time required so that the car occupies the i'th place in the middle row 1. check if there is a car over koporski 1.1 if there is no car, its optimal to just drive forward at max speed 2.1 if there is a car, we know we shall pass through the middle row 2. we need to find the earliest opening in the middle that we can go to 2.1 to find this opening, we must iterate over all of the middle elements, and check when is the earliest time we can go to it, if ever 2.3 in case no such element exists, the first element before all the cars is the answer. 3. now that we found the earliest element, we know that we will never go lower in the second row. This is because we would make a cycle coming back up 3.1 we just iterate over the positions in the dp from 0 to N, and for each position we check when is the earliest time we can go one above 3.1.1 we can either go one above by going to the left on a faster lane, or to the right on a slower lane 4. we will implement going to the left using a simple prefix sum array, and going to the right using a segment tree (? maybe we can do this faster) 5. after computing all of the dp values, it's safe to assume that the answer is either dp[N] or dp[N] + time to overtake the farthest cars overall the solution works in O(nlogn) with minor precision errors (i hope so), it might require some constant factor optimization remember to stress test using the error function provided in the statement */ const int MAXN=2e5+10; int max_velocity; int velocity[3]; int last_in_lane[3]; bitset<MAXN> car[3]; int gap_length[3][MAXN]; int next_opening[3][MAXN]; int car_length[3][MAXN]; int car_length_down[3][MAXN]; ld dp[MAXN]; vi left_car_positions; vi right_car_positions; const int INT_INF=1e9+2137; const ld LD_INF=1e18+2137; const ld LD_INF_SMALL=1e9+2137; const ld eps=1e-9; const int base=(1<<18); int segment_tree[base*2]; int find_geq(int p,ld val){ //cout<<p<<' '<<val<<'\n'; //int p2=p; p+=base; if(1.0*segment_tree[p]>=val-eps){ } else{ bool went_from_right; if(p&1) went_from_right=true; else went_from_right=false; p/=2; while(1.0*segment_tree[p*2+1]<val||went_from_right){ if(p&1) went_from_right=true; else went_from_right=false; p/=2; } p=p*2+1; while(p<base){ if(1.0*segment_tree[p*2]>=val-eps) p*=2; else p=p*2+1; } } //return p-base; /*p2+=base; while(1.0*segment_tree[p2]<val-eps) p2++; assert(1.0*segment_tree[p2]>=val-eps);*/ //cout<<'\n'; //cout<<"query answers:\n"; //cout<<p2-base<<'\n'; //cout<<p-base<<'\n'; //cout<<'\n'; //assert(p2==p); return p-base; } void solve(){ //processing the input int n; cin>>n; cin>>max_velocity; for(int i=0;i<3;i++) cin>>velocity[i]; for(int i=0;i<3;i++){ string s; cin>>s; last_in_lane[i]=-1; for(int j=0;j<n;j++) if(s[j]=='#'){ car[i][j+1]=true; last_in_lane[i]=j+1; } } //locate koporski int koporski_position; for(int i=0;i<=n;i++) if(car[2][i]){ koporski_position=i; break; } car[2][koporski_position]=false; //helper function, allows to compute the time koporski will overtake all of the farthest cars, assuming that he is already the first in his lane function<ld(ld,ld)> overtake_all=[&](ld _time,ld position){ ld added_time=0.0; for(int i=0;i<3;i++){ if(last_in_lane[i]==-1) continue; ld car_end_position=1.0*last_in_lane[i]+_time*velocity[i]+1.0; ld time_needed=(car_end_position-position)/(1.0*(max_velocity-velocity[i])); if(time_needed>added_time) added_time=time_needed; } return _time+added_time; }; if(koporski_position==last_in_lane[2]){ last_in_lane[2]=-1; cout<<precision(12)<<overtake_all(0.0,koporski_position)<<'\n'; return; } for(int i=0;i<3;i++){ gap_length[i][n+1]=INT_INF; next_opening[i][n+1]=-1; for(int j=n;j>=0;j--){ if(!car[i][j+1]) next_opening[i][j]=j+1; else next_opening[i][j]=next_opening[i][j+1]; if(car[i][j]) gap_length[i][j]=0; else gap_length[i][j]=gap_length[i][j+1]+1; } } //set all dp values to infinity for(int i=0;i<=n+1;i++) dp[i]=LD_INF; //when does koporski get blocked if he goes up with max velocity ld koporski_gets_blocked=(1.0*gap_length[2][koporski_position]-1.0)/(1.0*(max_velocity-velocity[2])); for(int i=0;i<=n+1;i++){ if(car[1][i]) continue; if(i<koporski_position){ ld koporski_alligns=(1.0*(koporski_position-i))/(1.0*velocity[1]); dp[i]=koporski_alligns; } else{ ld koporski_alligns=(1.0*(i-koporski_position))/(1.0*(max_velocity-velocity[1])); if(koporski_alligns<=koporski_gets_blocked+eps) dp[i]=koporski_alligns; } } //preparing the left cars for queries for(int i=0;i<=n+1;i++) if(car[0][i]) left_car_positions.eb(i); for(int i=0;i<3;i++){ for(int j=n+1;j>=0;j--){ if(car[i][j]) car_length[i][j]=car_length[i][j+1]+1; else car_length[i][j]=0; } if(car[i][0]) car_length_down[i][0]=1; else car_length_down[i][0]=0; for(int j=1;j<=n+1;j++) if(car[i][j]) car_length_down[i][j]=car_length_down[i][j-1]+1; else car_length_down[i][j]=0; } //preparing the right cars for queries for(int i=0;i<=n+1;i++) if(car[2][i]) right_car_positions.eb(i); for(int i=0;i<=n+1;i++) segment_tree[base+i]=gap_length[2][i]; for(int i=base-1;i>0;i--) segment_tree[i]=max(segment_tree[i*2],segment_tree[i*2+1]); ld ans=LD_INF; for(int i=0;i<=n+1;i++){ //can we even reach this position as hakier koporski if(dp[i]>=LD_INF-eps) continue; if(i<=n){ if(!car[1][i+1]){ ld goes_up_by_one=1.0/(max_velocity-velocity[1]); ld total_time_up=dp[i]+goes_up_by_one; if(total_time_up<dp[i+1]) dp[i+1]=total_time_up; } else{ //go up using left lane if(last_in_lane[0]!=-1){ ld left_lane_farthest=1.0*last_in_lane[0]+velocity[0]*dp[i]+1.0; ld koporski_begin_position=1.0*i+dp[i]*velocity[1]; if(!(koporski_begin_position>=left_lane_farthest-eps)){ int l=0,r=size(left_car_positions)-1; while(l<r){ int m=(l+r)/2; ld left_car_height=1.0*left_car_positions[m]+velocity[0]*dp[i]+1.0*car_length[0][left_car_positions[m]]; if(!(koporski_begin_position>=left_car_height-eps)) r=m; else l=m+1; } //if(i==8) // cout<<"XD\n"; ld left_car_low=1.0*left_car_positions[l]+velocity[0]*dp[i]; ld time_till_allign=((koporski_begin_position+1.0)-left_car_low)/(velocity[0]-velocity[1]); if(time_till_allign<0.0) time_till_allign=0.0; //if(i==8) // cout<<time_till_allign+dp[i]<<'\n'; //if(i==8){ // cout<<l<<'\n'; // cout<<koporski_begin_position<<' '<<left_car_low<<'\n'; //} /*if(i==2) cout<<time_till_allign<<'\n';*/ //i can cross to the left for free now koporski_begin_position+=time_till_allign*velocity[1]; left_car_low+=time_till_allign*velocity[0]; /*if(i==2){ cout<<left_car_low<<' '<<koporski_begin_position+1.0<<'\n'; cout<<2.0+(1.0/(15.0-10.0))*15.0<<'\n'; cout<<dp[i]+time_till_allign<<'\n'; }*/ koporski_gets_blocked=(left_car_low-(koporski_begin_position+1.0))/(max_velocity-velocity[0]); /*if(i==2) cout<<koporski_gets_blocked<<'\n';*/ ld next_car_position=koporski_begin_position+1.0+car_length[1][i+1]; ld time_till_allign2=(next_car_position-koporski_begin_position)/(max_velocity-velocity[1]); if(time_till_allign2<koporski_gets_blocked+eps){ ld total_time=time_till_allign+time_till_allign2+dp[i]; if(total_time<dp[i+car_length[1][i+1]+1]) dp[i+car_length[1][i+1]+1]=total_time; } else{ koporski_begin_position+=koporski_gets_blocked*max_velocity; /*if(i==2) cout<<"XD\n"; if(i==2){ cout<<koporski_begin_position<<' '<<'\n'; cout<<1.0*i+2.0+velocity[1]*(time_till_allign+dp[i]+koporski_gets_blocked)<<'\n'; cout<<time_till_allign+dp[i]+koporski_gets_blocked<<'\n'; }*/ next_car_position+=koporski_gets_blocked*velocity[1]; ld time_till_allign3=(next_car_position-koporski_begin_position)/(velocity[0]-velocity[1]); ld total_time=time_till_allign+koporski_gets_blocked+time_till_allign3+dp[i]; //if(i==8) // cout<<dp[i]+time_till_allign<<'\n'; if(total_time<dp[i+car_length[1][i+1]+1]) dp[i+car_length[1][i+1]+1]=total_time; } } } //go up using right lane { //we must find the lowest position that needs to disappear ld koporski_position_begin=1.0*i+dp[i]*velocity[1]; ld koporski_position_end=koporski_position_begin+1.0; int l=0,r=size(right_car_positions)-1; int temp_ans=-1; while(l<=r){ int m=(l+r)/2; ld right_car_depth=1.0*right_car_positions[m]+velocity[2]*dp[i]-1.0*car_length_down[2][right_car_positions[m]]+1.0; if(right_car_depth<=koporski_position_end+eps){ temp_ans=m; l=m+1; } else r=m-1; } if(temp_ans!=size(right_car_positions)-1){ ld move_to_accomodate; if(temp_ans==-1) move_to_accomodate=0.0; else{ ld right_car_height=1.0*right_car_positions[temp_ans]+velocity[2]*dp[i]+1.0; move_to_accomodate=(right_car_height-koporski_position_begin)/(velocity[1]-velocity[2]); if(move_to_accomodate<0.0) move_to_accomodate=0.0; } koporski_position_begin+=move_to_accomodate*velocity[1]; koporski_position_end=koporski_position_begin+1.0; ld time_to_next_empty=(1.0*car_length[1][i+1]+1.0)/(1.0*(max_velocity-velocity[1])); ld minimal_sufficient_length=time_to_next_empty*(1.0*(max_velocity-velocity[2]))+1.0; ld next_right_car_begin=1.0*right_car_positions[temp_ans+1]+(dp[i]+move_to_accomodate)*velocity[2]; ld length_between=next_right_car_begin-koporski_position_end+1.0; /*if(i==2){ cout<<"minimal_sufficient_length: "<<minimal_sufficient_length<<'\n'; cout<<"length_between: "<<length_between<<'\n'; }*/ if(length_between>=minimal_sufficient_length-eps){ /*if(i==4){ cout<<"XD\n"; cout<<minimal_sufficient_length<<'\n'; cout<<length_between<<'\n'; cout<<temp_ans<<'\n'; }*/ ld total_time=dp[i]+move_to_accomodate+time_to_next_empty; if(dp[i+car_length[1][i+1]+1]>total_time) dp[i+car_length[1][i+1]+1]=total_time; } else{ //if(i==5) // cout<<minimal_sufficient_length+1.0<<'\n'; int pozycja_ziomka=find_geq(right_car_positions[temp_ans+1],minimal_sufficient_length); ld dokladna_pozycja_ziomka=1.0*pozycja_ziomka+dp[i]*velocity[2]+move_to_accomodate*velocity[2]; ld czas_do_ziomka=(dokladna_pozycja_ziomka-koporski_position_begin)/(1.0*(velocity[1]-velocity[2])); ld total_time=dp[i]+move_to_accomodate+czas_do_ziomka+time_to_next_empty; /*if(i==10){ cout<<"Right car: "<<right_car_positions[temp_ans+1]<<'\n'; cout<<minimal_sufficient_length<<'\n'; cout<<pozycja_ziomka<<' '<<segment_tree[pozycja_ziomka+base]<<'\n'; cout<<koporski_position_begin<<' '<<dokladna_pozycja_ziomka<<'\n'; cout<<temp_ans<<' '<<size(right_car_positions)<<'\n'; cout<<dp[i]<<' '<<move_to_accomodate<<' '<<czas_do_ziomka<<' '<<time_to_next_empty<<'\n'; //cout<<total_time<<'\n'; }*/ if(dp[i+car_length[1][i+1]+1]>total_time) dp[i+car_length[1][i+1]+1]=total_time; } } } //cos tu nie dziala, z jakiegos powodu mam lepsze wyniki niz sa faktycznie } } //do we win if we go straight up? if(gap_length[1][i]>=INT_INF){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } //do we win if we go to the left? { if(last_in_lane[0]==-1){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } else{ koporski_gets_blocked=(1.0*gap_length[1][i]-1.0)/(1.0*(max_velocity-velocity[1])); ld koporski_car_begin_position=1.0*i+velocity[1]*dp[i]+koporski_gets_blocked*max_velocity; ld left_car_end_position=dp[i]*velocity[0]+1.0*last_in_lane[0]+1.0+koporski_gets_blocked*velocity[0]; if(koporski_car_begin_position>=left_car_end_position-eps){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } } } //do we win if we go to the right { /*if(i==4) cout<<"XD\n";*/ koporski_gets_blocked=(1.0*gap_length[1][i]-1.0)/(1.0*(max_velocity-velocity[1])); /*if(i==4) cout<<"koporski_gets_blocked: "<<koporski_gets_blocked<<'\n';*/ ld koporski_car_begin_position=1.0*i+velocity[1]*dp[i]+koporski_gets_blocked*max_velocity; /*if(i==4) cout<<"koporski_car_begin_position: "<<koporski_car_begin_position<<'\n';*/ ld right_car_end_position=dp[i]*velocity[2]+1.0*last_in_lane[2]+1.0+koporski_gets_blocked*velocity[2]; /*if(i==4) cout<<"right_car_end_position: "<<right_car_end_position<<'\n';*/ if(koporski_car_begin_position>=right_car_end_position-eps){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } ld additional_time_needed=(right_car_end_position-koporski_car_begin_position)/(1.0*(velocity[1]-velocity[2])); ld winning_time=overtake_all(dp[i]+koporski_gets_blocked+additional_time_needed,koporski_car_begin_position+additional_time_needed*velocity[1]); if(winning_time<ans) ans=winning_time; } } cout<<precision(13)<<ans<<'\n'; //for(int i=0;i<=n+1;i++) // cout<<dp[i]<<' '; /*for(int i=0;i<=n+1;i++) cout<<segment_tree[i+base]<<' '; cout<<'\n'; cout<<find_geq(7,3.1);*/ //for(int i=0;i<=n+1;i++) // cout<<segment_tree[i+base]<<' '; } int32_t main(){ fastio; if(TESTS){ int TEST_COUNT; cin>>TEST_COUNT; for(int i=0;i<TEST_COUNT;i++) solve(); } else solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> /* #pragma GCC target("avx2") #pragma GCC optimization("Ofast") #pragma GCC optimization("unroll-loops") */ using namespace __gnu_pbds; using namespace std; #define mp make_pair #define eb emplace_back #define pb push_back #define e1 first #define e2 second #define vt vector #define maxi(x,y) x=max(x,y) #define mini(x,y) x=min(x,y) #define size(x) (int)x.size() #define all(r) begin(r),end(r) #define fastio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0) #define cx real() #define cy imag() #define precision(x) setprecision(x)<<fixed #define time chrono::high_resolution_clock().now().time_since_epoch().count() #ifndef DEBUG #define DEBUG false #endif #define dbg if(DEBUG) typedef long long ll; typedef long double ld; typedef complex<long double> cplx; typedef unsigned int uint; typedef unsigned long long ull; typedef vt<int> vi; typedef vt<vi> vvi; typedef vt<bool> vb; typedef vt<vb> vvb; typedef vt<char> vc; typedef vt<vc> vvc; typedef vt<string> vs; typedef vt<vs> vvs; typedef vt<ll> vll; typedef vt<vll> vvll; typedef vt<ld> vld; typedef vt<vld> vvld; typedef vt<cplx> vcplx; typedef vt<vcplx> vvcplx; template<typename T> using ordset=tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; template<typename T1,typename T2> ostream& operator<<(ostream &os,pair<T1,T2>& VAR){ os<<"("<<VAR.e1<<","<<VAR.e2<<")"; return os; } template<typename T> ostream& operator<<(ostream& os,vt<T>& VAR){ os<<"["; for(int i=0;i<size(VAR)-1;i++) os<<VAR[i]<<","; if(size(VAR)) os<<VAR.back(); os<<"]"; return os; } template<typename T> istream& operator>>(istream& is,complex<T>& VAR){ T value; is>>value; VAR.real(value); is>>value; VAR.imag(value); return is; } const bool TESTS=false; /* dp[i] -> minimal time required so that the car occupies the i'th place in the middle row 1. check if there is a car over koporski 1.1 if there is no car, its optimal to just drive forward at max speed 2.1 if there is a car, we know we shall pass through the middle row 2. we need to find the earliest opening in the middle that we can go to 2.1 to find this opening, we must iterate over all of the middle elements, and check when is the earliest time we can go to it, if ever 2.3 in case no such element exists, the first element before all the cars is the answer. 3. now that we found the earliest element, we know that we will never go lower in the second row. This is because we would make a cycle coming back up 3.1 we just iterate over the positions in the dp from 0 to N, and for each position we check when is the earliest time we can go one above 3.1.1 we can either go one above by going to the left on a faster lane, or to the right on a slower lane 4. we will implement going to the left using a simple prefix sum array, and going to the right using a segment tree (? maybe we can do this faster) 5. after computing all of the dp values, it's safe to assume that the answer is either dp[N] or dp[N] + time to overtake the farthest cars overall the solution works in O(nlogn) with minor precision errors (i hope so), it might require some constant factor optimization remember to stress test using the error function provided in the statement */ const int MAXN=2e5+10; int max_velocity; int velocity[3]; int last_in_lane[3]; bitset<MAXN> car[3]; int gap_length[3][MAXN]; int next_opening[3][MAXN]; int car_length[3][MAXN]; int car_length_down[3][MAXN]; ld dp[MAXN]; vi left_car_positions; vi right_car_positions; const int INT_INF=1e9+2137; const ld LD_INF=1e18+2137; const ld LD_INF_SMALL=1e9+2137; const ld eps=1e-9; const int base=(1<<18); int segment_tree[base*2]; int find_geq(int p,ld val){ //cout<<p<<' '<<val<<'\n'; //int p2=p; p+=base; if(1.0*segment_tree[p]>=val-eps){ } else{ bool went_from_right; if(p&1) went_from_right=true; else went_from_right=false; p/=2; while(1.0*segment_tree[p*2+1]<val||went_from_right){ if(p&1) went_from_right=true; else went_from_right=false; p/=2; } p=p*2+1; while(p<base){ if(1.0*segment_tree[p*2]>=val-eps) p*=2; else p=p*2+1; } } //return p-base; /*p2+=base; while(1.0*segment_tree[p2]<val-eps) p2++; assert(1.0*segment_tree[p2]>=val-eps);*/ //cout<<'\n'; //cout<<"query answers:\n"; //cout<<p2-base<<'\n'; //cout<<p-base<<'\n'; //cout<<'\n'; //assert(p2==p); return p-base; } void solve(){ //processing the input int n; cin>>n; cin>>max_velocity; for(int i=0;i<3;i++) cin>>velocity[i]; for(int i=0;i<3;i++){ string s; cin>>s; last_in_lane[i]=-1; for(int j=0;j<n;j++) if(s[j]=='#'){ car[i][j+1]=true; last_in_lane[i]=j+1; } } //locate koporski int koporski_position; for(int i=0;i<=n;i++) if(car[2][i]){ koporski_position=i; break; } car[2][koporski_position]=false; //helper function, allows to compute the time koporski will overtake all of the farthest cars, assuming that he is already the first in his lane function<ld(ld,ld)> overtake_all=[&](ld _time,ld position){ ld added_time=0.0; for(int i=0;i<3;i++){ if(last_in_lane[i]==-1) continue; ld car_end_position=1.0*last_in_lane[i]+_time*velocity[i]+1.0; ld time_needed=(car_end_position-position)/(1.0*(max_velocity-velocity[i])); if(time_needed>added_time) added_time=time_needed; } return _time+added_time; }; if(koporski_position==last_in_lane[2]){ last_in_lane[2]=-1; cout<<precision(12)<<overtake_all(0.0,koporski_position)<<'\n'; return; } for(int i=0;i<3;i++){ gap_length[i][n+1]=INT_INF; next_opening[i][n+1]=-1; for(int j=n;j>=0;j--){ if(!car[i][j+1]) next_opening[i][j]=j+1; else next_opening[i][j]=next_opening[i][j+1]; if(car[i][j]) gap_length[i][j]=0; else gap_length[i][j]=gap_length[i][j+1]+1; } } //set all dp values to infinity for(int i=0;i<=n+1;i++) dp[i]=LD_INF; //when does koporski get blocked if he goes up with max velocity ld koporski_gets_blocked=(1.0*gap_length[2][koporski_position]-1.0)/(1.0*(max_velocity-velocity[2])); for(int i=0;i<=n+1;i++){ if(car[1][i]) continue; if(i<koporski_position){ ld koporski_alligns=(1.0*(koporski_position-i))/(1.0*velocity[1]); dp[i]=koporski_alligns; } else{ ld koporski_alligns=(1.0*(i-koporski_position))/(1.0*(max_velocity-velocity[1])); if(koporski_alligns<=koporski_gets_blocked+eps) dp[i]=koporski_alligns; } } //preparing the left cars for queries for(int i=0;i<=n+1;i++) if(car[0][i]) left_car_positions.eb(i); for(int i=0;i<3;i++){ for(int j=n+1;j>=0;j--){ if(car[i][j]) car_length[i][j]=car_length[i][j+1]+1; else car_length[i][j]=0; } if(car[i][0]) car_length_down[i][0]=1; else car_length_down[i][0]=0; for(int j=1;j<=n+1;j++) if(car[i][j]) car_length_down[i][j]=car_length_down[i][j-1]+1; else car_length_down[i][j]=0; } //preparing the right cars for queries for(int i=0;i<=n+1;i++) if(car[2][i]) right_car_positions.eb(i); for(int i=0;i<=n+1;i++) segment_tree[base+i]=gap_length[2][i]; for(int i=base-1;i>0;i--) segment_tree[i]=max(segment_tree[i*2],segment_tree[i*2+1]); ld ans=LD_INF; for(int i=0;i<=n+1;i++){ //can we even reach this position as hakier koporski if(dp[i]>=LD_INF-eps) continue; if(i<=n){ if(!car[1][i+1]){ ld goes_up_by_one=1.0/(max_velocity-velocity[1]); ld total_time_up=dp[i]+goes_up_by_one; if(total_time_up<dp[i+1]) dp[i+1]=total_time_up; } else{ //go up using left lane if(last_in_lane[0]!=-1){ ld left_lane_farthest=1.0*last_in_lane[0]+velocity[0]*dp[i]+1.0; ld koporski_begin_position=1.0*i+dp[i]*velocity[1]; if(!(koporski_begin_position>=left_lane_farthest-eps)){ int l=0,r=size(left_car_positions)-1; while(l<r){ int m=(l+r)/2; ld left_car_height=1.0*left_car_positions[m]+velocity[0]*dp[i]+1.0*car_length[0][left_car_positions[m]]; if(!(koporski_begin_position>=left_car_height-eps)) r=m; else l=m+1; } //if(i==8) // cout<<"XD\n"; ld left_car_low=1.0*left_car_positions[l]+velocity[0]*dp[i]; ld time_till_allign=((koporski_begin_position+1.0)-left_car_low)/(velocity[0]-velocity[1]); if(time_till_allign<0.0) time_till_allign=0.0; //if(i==8) // cout<<time_till_allign+dp[i]<<'\n'; //if(i==8){ // cout<<l<<'\n'; // cout<<koporski_begin_position<<' '<<left_car_low<<'\n'; //} /*if(i==2) cout<<time_till_allign<<'\n';*/ //i can cross to the left for free now koporski_begin_position+=time_till_allign*velocity[1]; left_car_low+=time_till_allign*velocity[0]; /*if(i==2){ cout<<left_car_low<<' '<<koporski_begin_position+1.0<<'\n'; cout<<2.0+(1.0/(15.0-10.0))*15.0<<'\n'; cout<<dp[i]+time_till_allign<<'\n'; }*/ koporski_gets_blocked=(left_car_low-(koporski_begin_position+1.0))/(max_velocity-velocity[0]); /*if(i==2) cout<<koporski_gets_blocked<<'\n';*/ ld next_car_position=koporski_begin_position+1.0+car_length[1][i+1]; ld time_till_allign2=(next_car_position-koporski_begin_position)/(max_velocity-velocity[1]); if(time_till_allign2<koporski_gets_blocked+eps){ ld total_time=time_till_allign+time_till_allign2+dp[i]; if(total_time<dp[i+car_length[1][i+1]+1]) dp[i+car_length[1][i+1]+1]=total_time; } else{ koporski_begin_position+=koporski_gets_blocked*max_velocity; /*if(i==2) cout<<"XD\n"; if(i==2){ cout<<koporski_begin_position<<' '<<'\n'; cout<<1.0*i+2.0+velocity[1]*(time_till_allign+dp[i]+koporski_gets_blocked)<<'\n'; cout<<time_till_allign+dp[i]+koporski_gets_blocked<<'\n'; }*/ next_car_position+=koporski_gets_blocked*velocity[1]; ld time_till_allign3=(next_car_position-koporski_begin_position)/(velocity[0]-velocity[1]); ld total_time=time_till_allign+koporski_gets_blocked+time_till_allign3+dp[i]; //if(i==8) // cout<<dp[i]+time_till_allign<<'\n'; if(total_time<dp[i+car_length[1][i+1]+1]) dp[i+car_length[1][i+1]+1]=total_time; } } } //go up using right lane { //we must find the lowest position that needs to disappear ld koporski_position_begin=1.0*i+dp[i]*velocity[1]; ld koporski_position_end=koporski_position_begin+1.0; int l=0,r=size(right_car_positions)-1; int temp_ans=-1; while(l<=r){ int m=(l+r)/2; ld right_car_depth=1.0*right_car_positions[m]+velocity[2]*dp[i]-1.0*car_length_down[2][right_car_positions[m]]+1.0; if(right_car_depth<=koporski_position_end+eps){ temp_ans=m; l=m+1; } else r=m-1; } if(temp_ans!=size(right_car_positions)-1){ ld move_to_accomodate; if(temp_ans==-1) move_to_accomodate=0.0; else{ ld right_car_height=1.0*right_car_positions[temp_ans]+velocity[2]*dp[i]+1.0; move_to_accomodate=(right_car_height-koporski_position_begin)/(velocity[1]-velocity[2]); if(move_to_accomodate<0.0) move_to_accomodate=0.0; } koporski_position_begin+=move_to_accomodate*velocity[1]; koporski_position_end=koporski_position_begin+1.0; ld time_to_next_empty=(1.0*car_length[1][i+1]+1.0)/(1.0*(max_velocity-velocity[1])); ld minimal_sufficient_length=time_to_next_empty*(1.0*(max_velocity-velocity[2]))+1.0; ld next_right_car_begin=1.0*right_car_positions[temp_ans+1]+(dp[i]+move_to_accomodate)*velocity[2]; ld length_between=next_right_car_begin-koporski_position_end+1.0; /*if(i==2){ cout<<"minimal_sufficient_length: "<<minimal_sufficient_length<<'\n'; cout<<"length_between: "<<length_between<<'\n'; }*/ if(length_between>=minimal_sufficient_length-eps){ /*if(i==4){ cout<<"XD\n"; cout<<minimal_sufficient_length<<'\n'; cout<<length_between<<'\n'; cout<<temp_ans<<'\n'; }*/ ld total_time=dp[i]+move_to_accomodate+time_to_next_empty; if(dp[i+car_length[1][i+1]+1]>total_time) dp[i+car_length[1][i+1]+1]=total_time; } else{ //if(i==5) // cout<<minimal_sufficient_length+1.0<<'\n'; int pozycja_ziomka=find_geq(right_car_positions[temp_ans+1],minimal_sufficient_length); ld dokladna_pozycja_ziomka=1.0*pozycja_ziomka+dp[i]*velocity[2]+move_to_accomodate*velocity[2]; ld czas_do_ziomka=(dokladna_pozycja_ziomka-koporski_position_begin)/(1.0*(velocity[1]-velocity[2])); ld total_time=dp[i]+move_to_accomodate+czas_do_ziomka+time_to_next_empty; /*if(i==10){ cout<<"Right car: "<<right_car_positions[temp_ans+1]<<'\n'; cout<<minimal_sufficient_length<<'\n'; cout<<pozycja_ziomka<<' '<<segment_tree[pozycja_ziomka+base]<<'\n'; cout<<koporski_position_begin<<' '<<dokladna_pozycja_ziomka<<'\n'; cout<<temp_ans<<' '<<size(right_car_positions)<<'\n'; cout<<dp[i]<<' '<<move_to_accomodate<<' '<<czas_do_ziomka<<' '<<time_to_next_empty<<'\n'; //cout<<total_time<<'\n'; }*/ if(dp[i+car_length[1][i+1]+1]>total_time) dp[i+car_length[1][i+1]+1]=total_time; } } } //cos tu nie dziala, z jakiegos powodu mam lepsze wyniki niz sa faktycznie } } //do we win if we go straight up? if(gap_length[1][i]>=INT_INF){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } //do we win if we go to the left? { if(last_in_lane[0]==-1){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } else{ koporski_gets_blocked=(1.0*gap_length[1][i]-1.0)/(1.0*(max_velocity-velocity[1])); ld koporski_car_begin_position=1.0*i+velocity[1]*dp[i]+koporski_gets_blocked*max_velocity; ld left_car_end_position=dp[i]*velocity[0]+1.0*last_in_lane[0]+1.0+koporski_gets_blocked*velocity[0]; if(koporski_car_begin_position>=left_car_end_position-eps){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } } } //do we win if we go to the right { /*if(i==4) cout<<"XD\n";*/ koporski_gets_blocked=(1.0*gap_length[1][i]-1.0)/(1.0*(max_velocity-velocity[1])); /*if(i==4) cout<<"koporski_gets_blocked: "<<koporski_gets_blocked<<'\n';*/ ld koporski_car_begin_position=1.0*i+velocity[1]*dp[i]+koporski_gets_blocked*max_velocity; /*if(i==4) cout<<"koporski_car_begin_position: "<<koporski_car_begin_position<<'\n';*/ ld right_car_end_position=dp[i]*velocity[2]+1.0*last_in_lane[2]+1.0+koporski_gets_blocked*velocity[2]; /*if(i==4) cout<<"right_car_end_position: "<<right_car_end_position<<'\n';*/ if(koporski_car_begin_position>=right_car_end_position-eps){ ld winning_time=overtake_all(dp[i],1.0*i+velocity[1]*dp[i]); if(winning_time<ans) ans=winning_time; continue; } ld additional_time_needed=(right_car_end_position-koporski_car_begin_position)/(1.0*(velocity[1]-velocity[2])); ld winning_time=overtake_all(dp[i]+koporski_gets_blocked+additional_time_needed,koporski_car_begin_position+additional_time_needed*velocity[1]); if(winning_time<ans) ans=winning_time; } } cout<<precision(13)<<ans<<'\n'; //for(int i=0;i<=n+1;i++) // cout<<dp[i]<<' '; /*for(int i=0;i<=n+1;i++) cout<<segment_tree[i+base]<<' '; cout<<'\n'; cout<<find_geq(7,3.1);*/ //for(int i=0;i<=n+1;i++) // cout<<segment_tree[i+base]<<' '; } int32_t main(){ fastio; if(TESTS){ int TEST_COUNT; cin>>TEST_COUNT; for(int i=0;i<TEST_COUNT;i++) solve(); } else solve(); return 0; } |