#include <bits/stdc++.h> using namespace std; using LL = long long; #define e1 first #define e2 second #define pb push_back #define OUT(x) {cout << x << "\n"; exit(0); } #define TCOUT(x) {cout << x << "\n"; return; } #define FOR(i, l, r) for(int i = (l); i <= (r); ++i) #define rep(i, l, r) for(int i = (l); i < (r); ++i) #define boost {ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); } #define sz(x) int(x.size()) #define trav(a, x) for(auto& a : x) #define all(x) begin(x), end(x) typedef long long ll; typedef pair <int, int> pii; typedef pair <ll, ll> pll; typedef vector<int> vi; typedef vector<ll> vll; mt19937_64 rng(time(0)); int random(int l, int r) { return uniform_int_distribution<int>(l, r)(rng); } #ifdef DEBUG template<class T> int size(T &&x) { return int(x.size()); } template<class A, class B> ostream& operator<<(ostream &out, const pair<A, B> &p) { return out << '(' << p.first << ", " << p.second << ')'; } template<class T> auto operator<<(ostream &out, T &&x) -> decltype(x.begin(), out) { out << '{'; for(auto it = x.begin(); it != x.end(); ++it) out << *it << (it == prev(x.end()) ? "" : ", "); return out << '}'; } void dump() {} template<class T, class... Args> void dump(T &&x, Args... args) { cerr << x << "; "; dump(args...); } #endif #ifdef DEBUG struct Nl{~Nl(){cerr << '\n';}}; # define debug(x...) cerr << (strcmp(#x, "") ? #x ": " : ""), dump(x), Nl(), cerr << "" #else # define debug(...) 0 && cerr #endif typedef long double ld; //Did you REAALLY consider sample tests? const bool MYDEBUG = 0; struct car { ld x; ld v; int len; car(ld xx, ld vv, int lenn) : x(xx), v(vv), len(lenn) { } ld pos(ld t) { return x + t * v; }; pair<ld, ld> get_interval(ld t) { ld pocz = pos(t); return make_pair(pocz, pocz + len); } void print() { if (MYDEBUG) cerr << "Auto of length " << len << " at position " << x << " with velocity " << v << endl; } }; vector <car> pas[4]; ld vpas[4]; int L; // 0 if they intersect // -1 if my car in front // 1 if my car behind const ld EPS = 0.0000000005; int cmp(const ld &x, const pair<ld, ld> &other) { //always resolve ties in favour of not colliding if (x + 1 - EPS <= other.first) return -1; if (x + EPS >= other.second) return 1; return 0; } bool is_free(int numer_pasa, ld t, ld x) { if (pas[numer_pasa].empty()) return true; int xx = 0, yy = sz(pas[numer_pasa]) - 1; while (xx < yy) { int mid = (xx + yy) / 2; auto car_interval = pas[numer_pasa][mid].get_interval(t); int cc = cmp(x, car_interval); if (cc == 0) return false; if (cc == -1) yy = --mid; else xx = ++mid; } auto car_interval = pas[numer_pasa][xx].get_interval(t); int cc = cmp(x, car_interval); return cc != 0; } int find_next_car(int numer_pasa, ld t, ld x) { //pierwsze auto przede mna, czyli find first car dla ktorego NIE jest 1 if (pas[numer_pasa].empty()) return -1; int xx = 0, yy = sz(pas[numer_pasa]) - 1; while (xx < yy) { int mid = (xx + yy) / 2; auto car_interval = pas[numer_pasa][mid].get_interval(t); int cc = cmp(x, car_interval); if (cc == 1) xx = ++mid; else yy = mid; } auto car_interval = pas[numer_pasa][xx].get_interval(t); int cc = cmp(x, car_interval); if (cc == 1) { return -1; } else { return xx; } } string grid[4]; ld X[4], V[4]; const ld INF = 1e15; const ld NOCARINF = 1e16; bool TEST = 0; pair<ld, ld> overtake[4][4]; vector <bool> can_still_undertake[4]; int OPTION[4][4]; int sgn(ld value) { if (value > 0) return 1; if (value < 0) return -1; return 0; } int main() { boost; cout << fixed << setprecision(15); cin >> L; rep(i, 0, 4) cin >> vpas[i]; rep(i, 1, 4) { cin >> grid[i]; grid[i] = "." + grid[i] + "."; for (int j=sz(grid[i])-2; j>=0; --j) { if (grid[i][j] == '#' && grid[i][j+1] == '.') { int x = j; while (grid[i][x-1] == '#') --x; if (i == 3 && x == 1) ++x; if (x <= j) { pas[i].pb(car(x, vpas[i], j - x + 1)); can_still_undertake[i].pb(true); } } } } rep(i, 1, 4) reverse(all(pas[i])); /*rep(i, 1, 4) { debug(i); for (auto samochod : pas[i]) samochod.print(); }*/ ld t = 0.0; rep(i, 1, 4) { X[i] = 1.0; V[i] = vpas[0]; } while (true) { if (MYDEBUG) { cerr << "\nSimulation time: " << t << endl; debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); debug("Position of all cars"); FOR(i, 1, 3) { trav(u, pas[i]) cout << u.pos(t) << ' '; cout << endl; } } //najpierw sprawdzmy, czy da sie zmienic pas bezpiecznie auto transition = [&](int skad, int dokad) { if (X[skad] <= X[dokad]) return; //we cannot have a better option ///debug("Try", skad, dokad); if (is_free(dokad, t, X[skad])) { if (MYDEBUG) cerr << "Changing from lane " << skad << " to lane " << dokad << " at time: " << t << endl; V[dokad] = vpas[0]; X[dokad] = X[skad]; if (MYDEBUG) { debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); } } }; auto time_of_approaching_next_car = [&](int pass) { if ((int)vpas[pass] == (int)V[pass]) return INF; //predkosci te same - nigdy to nie nastapi int car_place = find_next_car(pass, t, X[pass]); if (car_place == -1) return NOCARINF; //nigdy to nie nastapi car that_car = pas[pass][car_place]; //that_car.print(); ld car_difference = that_car.pos(t) - 1 - X[pass]; if (abs(car_difference) < EPS) return t; return t + (car_difference / (V[pass] - vpas[pass])); }; transition(1, 2); transition(3, 2); //at this point 2 is surely optimal transition(2, 1); transition(2, 3); //now 1 and 3 are optimal as well // this took 0 time, now let's focus on events which can take time ld next_event_time = NOCARINF; vector <ld> w_plecy(4); //kiedy wjade mojemu ziomkowi w plecy rep(i, 1, 4) { w_plecy[i] = time_of_approaching_next_car(i); if (w_plecy[i] == t) { V[i] = vpas[i]; } next_event_time = min(next_event_time, w_plecy[i]); } if (MYDEBUG) { debug(w_plecy); } if (next_event_time == t) continue; if (next_event_time == NOCARINF) { cout << t << "\n"; exit(0); } //there is some car which we can try to pass auto overtake_car = [&](int skad, int dokad) -> pair<ld, ld> { OPTION[skad][dokad] = -1; int car_place = find_next_car(dokad, t, X[skad]); if (car_place == -1) return {NOCARINF, NOCARINF}; car that_car = pas[dokad][car_place]; //that_car.print(); ld car_finish = that_car.pos(t) + that_car.len; ld car_difference = car_finish - X[skad]; ld my_velocity = V[skad] - vpas[dokad]; // speeding znalazlem buga!! if (my_velocity <= 0) { //nigdy nie wyprzedze, ale moge sprobowac zostac wyprzedzonym przez to auto w calosci!!! //if (V[skad] == vpas[0]) return {INF, INF}; //impossible to overtake if I am going with max speed auto car_interval = that_car.get_interval(t); int cc = cmp(X[skad], car_interval); if (cc != 0) return {INF, INF}; //not intersecting -> which means this is free and we should not wait ///debug("Considering undertake", skad, dokad); ld desired_position = that_car.pos(t) - 1; car_difference = desired_position - X[skad]; if (car_difference > 0) return {INF, INF}; car_difference *= -1; ld time_until_previous_hits_me = INF; ld distance_from_previous_car = INF; int next_car_this_lane = find_next_car(skad, t, X[skad]); if (next_car_this_lane == -1) next_car_this_lane = sz(pas[skad]); if (!can_still_undertake[dokad][car_place]) return {INF, INF}; OPTION[skad][dokad] = car_place; can_still_undertake[skad][next_car_this_lane] = false; if (next_car_this_lane > 0) { distance_from_previous_car = X[skad] - pas[skad][next_car_this_lane - 1].pos(t) - pas[skad][next_car_this_lane - 1].len; time_until_previous_hits_me = distance_from_previous_car / vpas[skad]; } ld czekajac_zerem = car_difference / vpas[dokad]; if (czekajac_zerem <= time_until_previous_hits_me) { ld ret_value = min(INF, t + czekajac_zerem); return {that_car.pos(ret_value) - 1, ret_value}; } if (MYDEBUG) debug(time_until_previous_hits_me, distance_from_previous_car, czekajac_zerem); // juz wiecej nie moge jechac samym zerem car_difference -= time_until_previous_hits_me * vpas[dokad]; ld delta = car_difference / (vpas[dokad] - vpas[skad]); ld ret_value = min(INF, t + time_until_previous_hits_me + delta); return {that_car.pos(ret_value) - 1, ret_value}; } ld delta = (car_difference / my_velocity); ld ret_value = min(INF, t + delta); return {that_car.pos(ret_value) + that_car.len, ret_value}; }; rep(i, 1, 4) { rep(j, 1, 4) { if (abs(i - j) == 1) { overtake[i][j] = overtake_car(i, j); if (MYDEBUG) debug(i, j, overtake[i][j]); next_event_time = min(next_event_time, overtake[i][j].second); } } } auto the_other = [&](int a, int b) { if (a > b) swap(a, b); if (a == 1 && b == 2) return 3; if (a == 1 && b == 3) return 2; if (a == 2 && b == 3) return 1; assert(1 == 0); }; bool overtakes = false; ld time_delta = next_event_time - t; assert(next_event_time != INF); next_event_time = max(next_event_time, t); if (false) { cout << "PANIC\n"; cout << next_event_time << ' ' << t << endl; cerr << "\nSimulation time: " << t << endl; debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); debug("Position of all cars"); FOR(i, 1, 3) { trav(u, pas[i]) cout << u.pos(t) << ' '; cout << endl; } exit(0); } rep(i, 1, 4) { rep(j, 1, 4) { if (abs(i - j) == 1) { overtake[i][j].second = max(t, overtake[i][j].second); ld proposed_time_delta = overtake[i][j].second - t; //debug(proposed_time_delta); //cerr << overtake[i][j].first << ' ' << X[j] + V[j] * proposed_time_delta << endl; if (!overtakes && overtake[i][j].second == next_event_time) { if (MYDEBUG) { debug("Deciding to overtake?", i, j); debug(overtake[i][j].first, X[j], V[j]); debug(X[j] + V[j] * proposed_time_delta); } if (overtake[i][j].first <= X[j] + V[j] * proposed_time_delta) continue; //not overtaking better positions if (MYDEBUG) debug("Decided."); overtakes = true; if (OPTION[i][j] != -1) { if (MYDEBUG) debug("In fact it was undertaking"); can_still_undertake[j][OPTION[i][j]] = false; } if (MYDEBUG) cerr << "Overtaking from lane " << i << " to lane " << j << " at time: " << overtake[i][j].second << endl; X[j] = overtake[i][j].first; X[i] += time_delta * V[i]; //they can differ significantly if it was an UNDERTAKE -> X[i] should NOT propagate int other = the_other(i, j); X[other] += time_delta * V[other]; V[j] = vpas[0]; //wlasnie wyprzedzilem auto, wiec speed jest v0 if (MYDEBUG) { debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); } } } } } if (!overtakes) { FOR(i, 1, 3) X[i] += time_delta * V[i]; } t = next_event_time; } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | #include <bits/stdc++.h> using namespace std; using LL = long long; #define e1 first #define e2 second #define pb push_back #define OUT(x) {cout << x << "\n"; exit(0); } #define TCOUT(x) {cout << x << "\n"; return; } #define FOR(i, l, r) for(int i = (l); i <= (r); ++i) #define rep(i, l, r) for(int i = (l); i < (r); ++i) #define boost {ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); } #define sz(x) int(x.size()) #define trav(a, x) for(auto& a : x) #define all(x) begin(x), end(x) typedef long long ll; typedef pair <int, int> pii; typedef pair <ll, ll> pll; typedef vector<int> vi; typedef vector<ll> vll; mt19937_64 rng(time(0)); int random(int l, int r) { return uniform_int_distribution<int>(l, r)(rng); } #ifdef DEBUG template<class T> int size(T &&x) { return int(x.size()); } template<class A, class B> ostream& operator<<(ostream &out, const pair<A, B> &p) { return out << '(' << p.first << ", " << p.second << ')'; } template<class T> auto operator<<(ostream &out, T &&x) -> decltype(x.begin(), out) { out << '{'; for(auto it = x.begin(); it != x.end(); ++it) out << *it << (it == prev(x.end()) ? "" : ", "); return out << '}'; } void dump() {} template<class T, class... Args> void dump(T &&x, Args... args) { cerr << x << "; "; dump(args...); } #endif #ifdef DEBUG struct Nl{~Nl(){cerr << '\n';}}; # define debug(x...) cerr << (strcmp(#x, "") ? #x ": " : ""), dump(x), Nl(), cerr << "" #else # define debug(...) 0 && cerr #endif typedef long double ld; //Did you REAALLY consider sample tests? const bool MYDEBUG = 0; struct car { ld x; ld v; int len; car(ld xx, ld vv, int lenn) : x(xx), v(vv), len(lenn) { } ld pos(ld t) { return x + t * v; }; pair<ld, ld> get_interval(ld t) { ld pocz = pos(t); return make_pair(pocz, pocz + len); } void print() { if (MYDEBUG) cerr << "Auto of length " << len << " at position " << x << " with velocity " << v << endl; } }; vector <car> pas[4]; ld vpas[4]; int L; // 0 if they intersect // -1 if my car in front // 1 if my car behind const ld EPS = 0.0000000005; int cmp(const ld &x, const pair<ld, ld> &other) { //always resolve ties in favour of not colliding if (x + 1 - EPS <= other.first) return -1; if (x + EPS >= other.second) return 1; return 0; } bool is_free(int numer_pasa, ld t, ld x) { if (pas[numer_pasa].empty()) return true; int xx = 0, yy = sz(pas[numer_pasa]) - 1; while (xx < yy) { int mid = (xx + yy) / 2; auto car_interval = pas[numer_pasa][mid].get_interval(t); int cc = cmp(x, car_interval); if (cc == 0) return false; if (cc == -1) yy = --mid; else xx = ++mid; } auto car_interval = pas[numer_pasa][xx].get_interval(t); int cc = cmp(x, car_interval); return cc != 0; } int find_next_car(int numer_pasa, ld t, ld x) { //pierwsze auto przede mna, czyli find first car dla ktorego NIE jest 1 if (pas[numer_pasa].empty()) return -1; int xx = 0, yy = sz(pas[numer_pasa]) - 1; while (xx < yy) { int mid = (xx + yy) / 2; auto car_interval = pas[numer_pasa][mid].get_interval(t); int cc = cmp(x, car_interval); if (cc == 1) xx = ++mid; else yy = mid; } auto car_interval = pas[numer_pasa][xx].get_interval(t); int cc = cmp(x, car_interval); if (cc == 1) { return -1; } else { return xx; } } string grid[4]; ld X[4], V[4]; const ld INF = 1e15; const ld NOCARINF = 1e16; bool TEST = 0; pair<ld, ld> overtake[4][4]; vector <bool> can_still_undertake[4]; int OPTION[4][4]; int sgn(ld value) { if (value > 0) return 1; if (value < 0) return -1; return 0; } int main() { boost; cout << fixed << setprecision(15); cin >> L; rep(i, 0, 4) cin >> vpas[i]; rep(i, 1, 4) { cin >> grid[i]; grid[i] = "." + grid[i] + "."; for (int j=sz(grid[i])-2; j>=0; --j) { if (grid[i][j] == '#' && grid[i][j+1] == '.') { int x = j; while (grid[i][x-1] == '#') --x; if (i == 3 && x == 1) ++x; if (x <= j) { pas[i].pb(car(x, vpas[i], j - x + 1)); can_still_undertake[i].pb(true); } } } } rep(i, 1, 4) reverse(all(pas[i])); /*rep(i, 1, 4) { debug(i); for (auto samochod : pas[i]) samochod.print(); }*/ ld t = 0.0; rep(i, 1, 4) { X[i] = 1.0; V[i] = vpas[0]; } while (true) { if (MYDEBUG) { cerr << "\nSimulation time: " << t << endl; debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); debug("Position of all cars"); FOR(i, 1, 3) { trav(u, pas[i]) cout << u.pos(t) << ' '; cout << endl; } } //najpierw sprawdzmy, czy da sie zmienic pas bezpiecznie auto transition = [&](int skad, int dokad) { if (X[skad] <= X[dokad]) return; //we cannot have a better option ///debug("Try", skad, dokad); if (is_free(dokad, t, X[skad])) { if (MYDEBUG) cerr << "Changing from lane " << skad << " to lane " << dokad << " at time: " << t << endl; V[dokad] = vpas[0]; X[dokad] = X[skad]; if (MYDEBUG) { debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); } } }; auto time_of_approaching_next_car = [&](int pass) { if ((int)vpas[pass] == (int)V[pass]) return INF; //predkosci te same - nigdy to nie nastapi int car_place = find_next_car(pass, t, X[pass]); if (car_place == -1) return NOCARINF; //nigdy to nie nastapi car that_car = pas[pass][car_place]; //that_car.print(); ld car_difference = that_car.pos(t) - 1 - X[pass]; if (abs(car_difference) < EPS) return t; return t + (car_difference / (V[pass] - vpas[pass])); }; transition(1, 2); transition(3, 2); //at this point 2 is surely optimal transition(2, 1); transition(2, 3); //now 1 and 3 are optimal as well // this took 0 time, now let's focus on events which can take time ld next_event_time = NOCARINF; vector <ld> w_plecy(4); //kiedy wjade mojemu ziomkowi w plecy rep(i, 1, 4) { w_plecy[i] = time_of_approaching_next_car(i); if (w_plecy[i] == t) { V[i] = vpas[i]; } next_event_time = min(next_event_time, w_plecy[i]); } if (MYDEBUG) { debug(w_plecy); } if (next_event_time == t) continue; if (next_event_time == NOCARINF) { cout << t << "\n"; exit(0); } //there is some car which we can try to pass auto overtake_car = [&](int skad, int dokad) -> pair<ld, ld> { OPTION[skad][dokad] = -1; int car_place = find_next_car(dokad, t, X[skad]); if (car_place == -1) return {NOCARINF, NOCARINF}; car that_car = pas[dokad][car_place]; //that_car.print(); ld car_finish = that_car.pos(t) + that_car.len; ld car_difference = car_finish - X[skad]; ld my_velocity = V[skad] - vpas[dokad]; // speeding znalazlem buga!! if (my_velocity <= 0) { //nigdy nie wyprzedze, ale moge sprobowac zostac wyprzedzonym przez to auto w calosci!!! //if (V[skad] == vpas[0]) return {INF, INF}; //impossible to overtake if I am going with max speed auto car_interval = that_car.get_interval(t); int cc = cmp(X[skad], car_interval); if (cc != 0) return {INF, INF}; //not intersecting -> which means this is free and we should not wait ///debug("Considering undertake", skad, dokad); ld desired_position = that_car.pos(t) - 1; car_difference = desired_position - X[skad]; if (car_difference > 0) return {INF, INF}; car_difference *= -1; ld time_until_previous_hits_me = INF; ld distance_from_previous_car = INF; int next_car_this_lane = find_next_car(skad, t, X[skad]); if (next_car_this_lane == -1) next_car_this_lane = sz(pas[skad]); if (!can_still_undertake[dokad][car_place]) return {INF, INF}; OPTION[skad][dokad] = car_place; can_still_undertake[skad][next_car_this_lane] = false; if (next_car_this_lane > 0) { distance_from_previous_car = X[skad] - pas[skad][next_car_this_lane - 1].pos(t) - pas[skad][next_car_this_lane - 1].len; time_until_previous_hits_me = distance_from_previous_car / vpas[skad]; } ld czekajac_zerem = car_difference / vpas[dokad]; if (czekajac_zerem <= time_until_previous_hits_me) { ld ret_value = min(INF, t + czekajac_zerem); return {that_car.pos(ret_value) - 1, ret_value}; } if (MYDEBUG) debug(time_until_previous_hits_me, distance_from_previous_car, czekajac_zerem); // juz wiecej nie moge jechac samym zerem car_difference -= time_until_previous_hits_me * vpas[dokad]; ld delta = car_difference / (vpas[dokad] - vpas[skad]); ld ret_value = min(INF, t + time_until_previous_hits_me + delta); return {that_car.pos(ret_value) - 1, ret_value}; } ld delta = (car_difference / my_velocity); ld ret_value = min(INF, t + delta); return {that_car.pos(ret_value) + that_car.len, ret_value}; }; rep(i, 1, 4) { rep(j, 1, 4) { if (abs(i - j) == 1) { overtake[i][j] = overtake_car(i, j); if (MYDEBUG) debug(i, j, overtake[i][j]); next_event_time = min(next_event_time, overtake[i][j].second); } } } auto the_other = [&](int a, int b) { if (a > b) swap(a, b); if (a == 1 && b == 2) return 3; if (a == 1 && b == 3) return 2; if (a == 2 && b == 3) return 1; assert(1 == 0); }; bool overtakes = false; ld time_delta = next_event_time - t; assert(next_event_time != INF); next_event_time = max(next_event_time, t); if (false) { cout << "PANIC\n"; cout << next_event_time << ' ' << t << endl; cerr << "\nSimulation time: " << t << endl; debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); debug("Position of all cars"); FOR(i, 1, 3) { trav(u, pas[i]) cout << u.pos(t) << ' '; cout << endl; } exit(0); } rep(i, 1, 4) { rep(j, 1, 4) { if (abs(i - j) == 1) { overtake[i][j].second = max(t, overtake[i][j].second); ld proposed_time_delta = overtake[i][j].second - t; //debug(proposed_time_delta); //cerr << overtake[i][j].first << ' ' << X[j] + V[j] * proposed_time_delta << endl; if (!overtakes && overtake[i][j].second == next_event_time) { if (MYDEBUG) { debug("Deciding to overtake?", i, j); debug(overtake[i][j].first, X[j], V[j]); debug(X[j] + V[j] * proposed_time_delta); } if (overtake[i][j].first <= X[j] + V[j] * proposed_time_delta) continue; //not overtaking better positions if (MYDEBUG) debug("Decided."); overtakes = true; if (OPTION[i][j] != -1) { if (MYDEBUG) debug("In fact it was undertaking"); can_still_undertake[j][OPTION[i][j]] = false; } if (MYDEBUG) cerr << "Overtaking from lane " << i << " to lane " << j << " at time: " << overtake[i][j].second << endl; X[j] = overtake[i][j].first; X[i] += time_delta * V[i]; //they can differ significantly if it was an UNDERTAKE -> X[i] should NOT propagate int other = the_other(i, j); X[other] += time_delta * V[other]; V[j] = vpas[0]; //wlasnie wyprzedzilem auto, wiec speed jest v0 if (MYDEBUG) { debug(X[1], X[2], X[3]); debug(V[1], V[2], V[3]); } } } } } if (!overtakes) { FOR(i, 1, 3) X[i] += time_delta * V[i]; } t = next_event_time; } } |