#include <cstdio> #include <queue> const long double eps = 1e-9L; const int max_length = 300010; bool equal(long double a, long double b) { a -= b; return -eps < a && a < eps; } bool gt(long double a, long double b) { a -= b; return a > eps; } bool ge(long double a, long double b) { a -= b; return a > -eps; } bool lt(long double a, long double b) { a -= b; return a < -eps; } bool le(long double a, long double b) { a -= b; return a < eps; } struct Hole { long long begin; long long end; }; int length, v0; char buffer[max_length]; int n[3]; int v[3]; Hole ev[3][max_length]; bool visited[3][3][2 * max_length][2]; struct Entry { long double t; int line; int ps_line; int ps_edge; int ps_side; bool operator<(const Entry& e) const { return t > e.t; } }; std::priority_queue<Entry> pq; long double compute_position(long double t, int line, int edge, int side) { int e = side == 0 ? ev[line][edge].begin : ev[line][edge].end; return t * v[line] + e; } void make_entry(int c, long double t, int line, int ps_line, int ps_edge, int ps_side) { if (ps_side == 1 && n[ps_line] == ps_edge + 1) { // printf("SKIP\n"); return; } // printf("CASE: %d %lf %d %d %d %d\n", c, t, line, ps_line, ps_edge, ps_side); Entry e; e.t = t; e.line = line; e.ps_line = ps_line; e.ps_edge = ps_edge; e.ps_side = ps_side; pq.push(e); } // pierwszy ktory ma koniec nie mniejszy int find_next_hole(int line, long double t, long double my_position) { int left = 0, right = n[line]; while (left < right) { int middle = (left + right) / 2; long double begin = ev[line][middle].begin + t * v[line]; long double end = ev[line][middle].end + t * v[line]; if (le(begin, my_position) && le(my_position, end)) { return middle; } if (gt(my_position, end)) left = middle + 1; else right = middle; } return left; } int main() { n[0] = n[1] = n[2] = 0; scanf("%d %d %d %d %d", &length, &v0, &v[0], &v[1], &v[2]); for (int k = 0; k < 3; ++k) { scanf(" %s ", buffer); buffer[0] = '.'; buffer[length] = '.'; buffer[length + 1] = '.'; buffer[length + 2] = 0; int begins = 1; for (int i = 1; i <= length + 1 ; ++i) { if (buffer[i] == '#' && buffer[i - 1] == '.') { ev[k][n[k]].begin = begins; ev[k][n[k]].end = i; ++n[k]; } if (buffer[i] == '#' && buffer[i + 1] == '.') { begins = i + 2; } } // guards. ev[k][n[k]].begin = begins; ev[k][n[k]].end = 1000000000000000000LL; ++n[k]; } for (int i = 0; i < 2 * max_length; ++i) { for (int j = 0; j < 3; ++j) { visited[0][j][i][0] = visited[1][j][i][0] = visited[2][j][i][0] = 0; visited[0][j][i][1] = visited[1][j][i][1] = visited[2][j][i][1] = 0; } } make_entry(0, 0.0, 2, 2, 0, 0); long double ans = 1e9L; while (!pq.empty()) { long double t0 = pq.top().t; // printf("%lf\n", t0); int loc_line = pq.top().line; int line = pq.top().ps_line; int edge = pq.top().ps_edge; int side = pq.top().ps_side; pq.pop(); if (visited[loc_line][line][edge][side]) continue; if (t0 > ans) continue; visited[loc_line][line][edge][side] = 1; long double my_position = compute_position(t0, line, edge, side); // if (1.0 + t0 * v0 + eps< my_position) printf("BUUUGGG\n"); // printf("%lf %lf %lf | %d %d %d %d\n", t0, my_position, length + v[0] * t0, loc_line, line, edge, side); // this should be always my current one. int id = find_next_hole(loc_line, t0, my_position); if (ev[loc_line][id].end == 1000000000000000000LL) { long double dt = 0.0; long double pos_0 = ev[0][n[0] - 1].begin + t0 * v[0]; if (gt(pos_0,my_position)) { long double dd = (pos_0 - my_position) / (v0 - v[0]); if (dt < dd) dt = dd; } long double pos_1 = ev[1][n[1] - 1].begin + t0 * v[1]; if (gt(pos_1, my_position)) { long double dd = (pos_1 - my_position) / (v0 - v[1]); if (dt < dd) dt = dd; } long double pos_2 = ev[2][n[2] - 1].begin + t0 * v[2]; if (gt(pos_2, my_position)) { long double dd = (pos_2 - my_position) / (v0 - v[2]); if (dt < dd) dt = dd; } if (ans > t0 + dt) ans = t0 + dt; // we are free to bypass. // printf("FREE\n"); continue; } if (loc_line == 2) { long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[2]); // Case: wskocz na pas 1 { int hole_id = find_next_hole(1, t0, my_position); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[1][line][edge][side]) { // avoid cycles. make_entry(1, t0, 1, line, edge, side); } } } // Case: moze zrownaj sie z nastepnym eventem na 1. { int hole_id = find_next_hole(1, t0, my_position); long double hole_end = compute_position(t0, 1, hole_id, 1); if (equal(hole_end, my_position)) { ++hole_id; long double hole_begin = compute_position(t0, 1, hole_id, 0); long double time_needed = (hole_begin - my_position) / (v0 - v[1]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(2, t0 + time_needed, 2, 1, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (v0 - v[1]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(3, t0 + time_needed, 2, 1, hole_id, 1); } } } } else if (loc_line == 1) { long double begin_position = compute_position(t0, loc_line, id, 0); long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[1]); long double t2 = (my_position - begin_position) / v[1]; // Case: podjedz na zderzak if (gt(t1, 0.0)) { make_entry(4, t0 + t1, 1, 1, id, 1); } // Case: cofnij na maske if (gt(t2, 0.0)) { make_entry(5, t0 + t2, 1, 1, id, 0); } // Case: moze zrownaj sie z nastepnym eventem na 0. { int hole_id = find_next_hole(0, t0, my_position); long double hole_end = compute_position(t0, 0, hole_id, 1); if (equal(hole_end, my_position)) { ++hole_id; long double hole_begin = compute_position(t0, 0, hole_id, 0); long double time_needed = (hole_begin - my_position) / (v0 - v[0]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(6, t0 + time_needed, 1, 0, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (v0 - v[0]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(7, t0 + time_needed, 1, 0, hole_id, 1); } } } // Case: moze poczekaj na poprzednia dziure? { int hole_id = find_next_hole(0, t0, my_position); long double hole_begin = compute_position(t0, 0, hole_id, 0); long double my_speed = 0; long double time_got = t2; if (equal(my_position, end_position)){ // jade na masce my_speed = v[1]; time_got = 1e9; } if (gt(hole_begin, my_position) && hole_id >= 1) { long double hole_end = compute_position(t0, 0, hole_id - 1, 1); long double time_needed = (my_position - hole_end) / (v[0] - my_speed); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(8, t0 + time_needed, 1, 0, hole_id - 1, 1); } } } // Case: wskocz na pas 0 { int hole_id = find_next_hole(0, t0, my_position); long double hole_begin = compute_position(t0, 0, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[0][line][edge][side]) { // avoid cycles. make_entry(9, t0, 0, line, edge, side); } } } // Case: wskocz na pas 2 { int hole_id = find_next_hole(2, t0, my_position); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[2][line][edge][side]) { // avoid cycles. make_entry(10, t0, 2, line, edge, side); } } } // Case: zrownaj sie z nastepnym eventem { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[1]; time_got = 1e9; } int hole_id = find_next_hole(2, t0, my_position); long double hole_end = compute_position(t0, 2, hole_id, 1); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 2, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(11, t0 + time_needed, 1, 2, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(22, t0 + time_needed, 1, 2, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(12, t0 + time_needed, 1, 2, hole_id, 1); } } } } else if (loc_line == 0) { long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[0]); // Case: podjedz na zderzak if (gt(t1, 0.0)) { make_entry(13, t0 + t1, 0, 0, id, 1); } // Case: zrownaj sie z nastepnym eventem na 1 { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[0]; time_got = 1e9; } int hole_id = find_next_hole(1, t0, my_position); long double hole_end = compute_position(t0, 1, hole_id, 1); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 1, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[1]); if (lt(time_needed, time_got)) { // zdarze sie zrownac. make_entry(14, t0 + time_needed, 0, 1, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[1]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(19, t0 + time_needed, 0, 1, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[1]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(15, t0 + time_needed, 0, 1, hole_id, 1); } } } // Case: zrownaj sie z nastepnym eventem na 2 { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[0]; time_got = 1e9; } int hole_id = find_next_hole(2, t0, my_position); long double hole_end = compute_position(t0, 2, hole_id, 1); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 2, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(17, t0 + time_needed, 0, 2, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(20, t0 + time_needed, 0, 2, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(18, t0 + time_needed, 0, 2, hole_id, 1); } } } // Case: wskocz na pas 1. { int hole_id = find_next_hole(1, t0, my_position); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[1][line][edge][side]) { // avoid cycles. make_entry(16, t0, 1, line, edge, side); } } } } } printf("%.19Lf\n", ans); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | #include <cstdio> #include <queue> const long double eps = 1e-9L; const int max_length = 300010; bool equal(long double a, long double b) { a -= b; return -eps < a && a < eps; } bool gt(long double a, long double b) { a -= b; return a > eps; } bool ge(long double a, long double b) { a -= b; return a > -eps; } bool lt(long double a, long double b) { a -= b; return a < -eps; } bool le(long double a, long double b) { a -= b; return a < eps; } struct Hole { long long begin; long long end; }; int length, v0; char buffer[max_length]; int n[3]; int v[3]; Hole ev[3][max_length]; bool visited[3][3][2 * max_length][2]; struct Entry { long double t; int line; int ps_line; int ps_edge; int ps_side; bool operator<(const Entry& e) const { return t > e.t; } }; std::priority_queue<Entry> pq; long double compute_position(long double t, int line, int edge, int side) { int e = side == 0 ? ev[line][edge].begin : ev[line][edge].end; return t * v[line] + e; } void make_entry(int c, long double t, int line, int ps_line, int ps_edge, int ps_side) { if (ps_side == 1 && n[ps_line] == ps_edge + 1) { // printf("SKIP\n"); return; } // printf("CASE: %d %lf %d %d %d %d\n", c, t, line, ps_line, ps_edge, ps_side); Entry e; e.t = t; e.line = line; e.ps_line = ps_line; e.ps_edge = ps_edge; e.ps_side = ps_side; pq.push(e); } // pierwszy ktory ma koniec nie mniejszy int find_next_hole(int line, long double t, long double my_position) { int left = 0, right = n[line]; while (left < right) { int middle = (left + right) / 2; long double begin = ev[line][middle].begin + t * v[line]; long double end = ev[line][middle].end + t * v[line]; if (le(begin, my_position) && le(my_position, end)) { return middle; } if (gt(my_position, end)) left = middle + 1; else right = middle; } return left; } int main() { n[0] = n[1] = n[2] = 0; scanf("%d %d %d %d %d", &length, &v0, &v[0], &v[1], &v[2]); for (int k = 0; k < 3; ++k) { scanf(" %s ", buffer); buffer[0] = '.'; buffer[length] = '.'; buffer[length + 1] = '.'; buffer[length + 2] = 0; int begins = 1; for (int i = 1; i <= length + 1 ; ++i) { if (buffer[i] == '#' && buffer[i - 1] == '.') { ev[k][n[k]].begin = begins; ev[k][n[k]].end = i; ++n[k]; } if (buffer[i] == '#' && buffer[i + 1] == '.') { begins = i + 2; } } // guards. ev[k][n[k]].begin = begins; ev[k][n[k]].end = 1000000000000000000LL; ++n[k]; } for (int i = 0; i < 2 * max_length; ++i) { for (int j = 0; j < 3; ++j) { visited[0][j][i][0] = visited[1][j][i][0] = visited[2][j][i][0] = 0; visited[0][j][i][1] = visited[1][j][i][1] = visited[2][j][i][1] = 0; } } make_entry(0, 0.0, 2, 2, 0, 0); long double ans = 1e9L; while (!pq.empty()) { long double t0 = pq.top().t; // printf("%lf\n", t0); int loc_line = pq.top().line; int line = pq.top().ps_line; int edge = pq.top().ps_edge; int side = pq.top().ps_side; pq.pop(); if (visited[loc_line][line][edge][side]) continue; if (t0 > ans) continue; visited[loc_line][line][edge][side] = 1; long double my_position = compute_position(t0, line, edge, side); // if (1.0 + t0 * v0 + eps< my_position) printf("BUUUGGG\n"); // printf("%lf %lf %lf | %d %d %d %d\n", t0, my_position, length + v[0] * t0, loc_line, line, edge, side); // this should be always my current one. int id = find_next_hole(loc_line, t0, my_position); if (ev[loc_line][id].end == 1000000000000000000LL) { long double dt = 0.0; long double pos_0 = ev[0][n[0] - 1].begin + t0 * v[0]; if (gt(pos_0,my_position)) { long double dd = (pos_0 - my_position) / (v0 - v[0]); if (dt < dd) dt = dd; } long double pos_1 = ev[1][n[1] - 1].begin + t0 * v[1]; if (gt(pos_1, my_position)) { long double dd = (pos_1 - my_position) / (v0 - v[1]); if (dt < dd) dt = dd; } long double pos_2 = ev[2][n[2] - 1].begin + t0 * v[2]; if (gt(pos_2, my_position)) { long double dd = (pos_2 - my_position) / (v0 - v[2]); if (dt < dd) dt = dd; } if (ans > t0 + dt) ans = t0 + dt; // we are free to bypass. // printf("FREE\n"); continue; } if (loc_line == 2) { long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[2]); // Case: wskocz na pas 1 { int hole_id = find_next_hole(1, t0, my_position); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[1][line][edge][side]) { // avoid cycles. make_entry(1, t0, 1, line, edge, side); } } } // Case: moze zrownaj sie z nastepnym eventem na 1. { int hole_id = find_next_hole(1, t0, my_position); long double hole_end = compute_position(t0, 1, hole_id, 1); if (equal(hole_end, my_position)) { ++hole_id; long double hole_begin = compute_position(t0, 1, hole_id, 0); long double time_needed = (hole_begin - my_position) / (v0 - v[1]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(2, t0 + time_needed, 2, 1, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (v0 - v[1]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(3, t0 + time_needed, 2, 1, hole_id, 1); } } } } else if (loc_line == 1) { long double begin_position = compute_position(t0, loc_line, id, 0); long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[1]); long double t2 = (my_position - begin_position) / v[1]; // Case: podjedz na zderzak if (gt(t1, 0.0)) { make_entry(4, t0 + t1, 1, 1, id, 1); } // Case: cofnij na maske if (gt(t2, 0.0)) { make_entry(5, t0 + t2, 1, 1, id, 0); } // Case: moze zrownaj sie z nastepnym eventem na 0. { int hole_id = find_next_hole(0, t0, my_position); long double hole_end = compute_position(t0, 0, hole_id, 1); if (equal(hole_end, my_position)) { ++hole_id; long double hole_begin = compute_position(t0, 0, hole_id, 0); long double time_needed = (hole_begin - my_position) / (v0 - v[0]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(6, t0 + time_needed, 1, 0, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (v0 - v[0]); if (le(time_needed, t1)) { // zdarze sie zrownac. make_entry(7, t0 + time_needed, 1, 0, hole_id, 1); } } } // Case: moze poczekaj na poprzednia dziure? { int hole_id = find_next_hole(0, t0, my_position); long double hole_begin = compute_position(t0, 0, hole_id, 0); long double my_speed = 0; long double time_got = t2; if (equal(my_position, end_position)){ // jade na masce my_speed = v[1]; time_got = 1e9; } if (gt(hole_begin, my_position) && hole_id >= 1) { long double hole_end = compute_position(t0, 0, hole_id - 1, 1); long double time_needed = (my_position - hole_end) / (v[0] - my_speed); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(8, t0 + time_needed, 1, 0, hole_id - 1, 1); } } } // Case: wskocz na pas 0 { int hole_id = find_next_hole(0, t0, my_position); long double hole_begin = compute_position(t0, 0, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[0][line][edge][side]) { // avoid cycles. make_entry(9, t0, 0, line, edge, side); } } } // Case: wskocz na pas 2 { int hole_id = find_next_hole(2, t0, my_position); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[2][line][edge][side]) { // avoid cycles. make_entry(10, t0, 2, line, edge, side); } } } // Case: zrownaj sie z nastepnym eventem { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[1]; time_got = 1e9; } int hole_id = find_next_hole(2, t0, my_position); long double hole_end = compute_position(t0, 2, hole_id, 1); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 2, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(11, t0 + time_needed, 1, 2, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(22, t0 + time_needed, 1, 2, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(12, t0 + time_needed, 1, 2, hole_id, 1); } } } } else if (loc_line == 0) { long double end_position = compute_position(t0, loc_line, id, 1); long double t1 = (end_position - my_position) / (v0 - v[0]); // Case: podjedz na zderzak if (gt(t1, 0.0)) { make_entry(13, t0 + t1, 0, 0, id, 1); } // Case: zrownaj sie z nastepnym eventem na 1 { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[0]; time_got = 1e9; } int hole_id = find_next_hole(1, t0, my_position); long double hole_end = compute_position(t0, 1, hole_id, 1); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 1, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[1]); if (lt(time_needed, time_got)) { // zdarze sie zrownac. make_entry(14, t0 + time_needed, 0, 1, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[1]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(19, t0 + time_needed, 0, 1, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[1]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(15, t0 + time_needed, 0, 1, hole_id, 1); } } } // Case: zrownaj sie z nastepnym eventem na 2 { long double my_speed = v0; long double time_got = t1; if (equal(my_position, end_position)){ // jade na zderzaku my_speed = v[0]; time_got = 1e9; } int hole_id = find_next_hole(2, t0, my_position); long double hole_end = compute_position(t0, 2, hole_id, 1); long double hole_begin = compute_position(t0, 2, hole_id, 0); if (equal(hole_end, my_position)) { ++hole_id; hole_begin = compute_position(t0, 2, hole_id, 0); long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(17, t0 + time_needed, 0, 2, hole_id, 0); } } else if (gt(hole_begin, my_position)) { long double time_needed = (hole_begin - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(20, t0 + time_needed, 0, 2, hole_id, 0); } } else { long double time_needed = (hole_end - my_position) / (my_speed - v[2]); if (le(time_needed, time_got)) { // zdarze sie zrownac. make_entry(18, t0 + time_needed, 0, 2, hole_id, 1); } } } // Case: wskocz na pas 1. { int hole_id = find_next_hole(1, t0, my_position); long double hole_begin = compute_position(t0, 1, hole_id, 0); if (le(hole_begin, my_position)) { if (!visited[1][line][edge][side]) { // avoid cycles. make_entry(16, t0, 1, line, edge, side); } } } } } printf("%.19Lf\n", ans); return 0; } |