#include<bits/stdc++.h> using namespace std; using LL=long long; #define FOR(i,l,r) for(int i=(l);i<=(r);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) int(x.size()) template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<'('<<p.first<<", "<<p.second<<')';} template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<'{';int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<'}';} #ifdef DEBUG #define debug(x...) cerr<<"["#x"]: ",[](auto...$){((cerr<<$<<"; "),...)<<'\n';}(x) #else #define debug(...) {} #endif struct Dinic { using T = int; struct Edge { int v, u; T flow, cap; }; int n; vector<vector<int>> graph; vector<Edge> edges; Dinic(int N) : n(N), graph(n) {} void add_edge(int v, int u, T cap) { //debug(v, u, cap); int e = ssize(edges); graph[v].emplace_back(e); graph[u].emplace_back(e + 1); edges.emplace_back(Edge{v, u, 0, cap}); edges.emplace_back(Edge{u, v, 0, 0}); } void del_edge(int v, int u) { graph[v].pop_back(); graph[u].pop_back(); edges.pop_back(); edges.pop_back(); } vector<int> dist; bool bfs(int source, int sink) { dist.assign(n, 0); dist[source] = 1; deque<int> que = {source}; while(ssize(que) and dist[sink] == 0) { int v = que.front(); que.pop_front(); for(int e : graph[v]) if(edges[e].flow != edges[e].cap and dist[edges[e].u] == 0) { dist[edges[e].u] = dist[v] + 1; que.emplace_back(edges[e].u); } } return dist[sink] != 0; } vector<int> ended_at; T dfs(int v, int sink, T flow = numeric_limits<T>::max()) { if(flow == 0 or v == sink) return flow; for(; ended_at[v] != ssize(graph[v]); ++ended_at[v]) { Edge &e = edges[graph[v][ended_at[v]]]; if(dist[v] + 1 == dist[e.u]) if(T pushed = dfs(e.u, sink, min(flow, e.cap - e.flow))) { e.flow += pushed; edges[graph[v][ended_at[v]] ^ 1].flow -= pushed; return pushed; } } return 0; } T operator()(int source, int sink) { T answer = 0; while(true) { if(not bfs(source, sink)) break; ended_at.assign(n, 0); while(T pushed = dfs(source, sink)) answer += pushed; } return answer; } map<pair<int, int>, T> get_flowing() { map<pair<int, int>, T> ret; REP(v, n) for(int i : graph[v]) { if(i % 2) // considering only original edges continue; Edge &e = edges[i]; ret[make_pair(v, e.u)] = e.flow; } return ret; } }; int main() { cin.tie(0)->sync_with_stdio(0); int n, m, k; cin >> n >> m >> k; const int S = 2 * n; const int T = 2 * n + 1; Dinic dinic(2 * n + 2); REP(i,k) { dinic.add_edge(S, i, 1); } REP(i,n) { dinic.add_edge(i, i + n, 1); } REP(i,m) { int a, b; cin >> a >> b; --a; --b; dinic.add_edge(a + n, b, 1); } vector<LL> ans(k + 1); FOR(i,k,n-1) { int sum = 0; FOR(j,i,n-1) { dinic.add_edge(j + n, T, 1); sum += dinic(S, T); ++ans[sum]; debug(i, j, sum); } dinic(T, S); FOR(j,i,n-1) { dinic.del_edge(j + n, T); } } REP(i,k+1) { cout << ans[i] << '\n'; } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | #include<bits/stdc++.h> using namespace std; using LL=long long; #define FOR(i,l,r) for(int i=(l);i<=(r);++i) #define REP(i,n) FOR(i,0,(n)-1) #define ssize(x) int(x.size()) template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<'('<<p.first<<", "<<p.second<<')';} template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<'{';int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<'}';} #ifdef DEBUG #define debug(x...) cerr<<"["#x"]: ",[](auto...$){((cerr<<$<<"; "),...)<<'\n';}(x) #else #define debug(...) {} #endif struct Dinic { using T = int; struct Edge { int v, u; T flow, cap; }; int n; vector<vector<int>> graph; vector<Edge> edges; Dinic(int N) : n(N), graph(n) {} void add_edge(int v, int u, T cap) { //debug(v, u, cap); int e = ssize(edges); graph[v].emplace_back(e); graph[u].emplace_back(e + 1); edges.emplace_back(Edge{v, u, 0, cap}); edges.emplace_back(Edge{u, v, 0, 0}); } void del_edge(int v, int u) { graph[v].pop_back(); graph[u].pop_back(); edges.pop_back(); edges.pop_back(); } vector<int> dist; bool bfs(int source, int sink) { dist.assign(n, 0); dist[source] = 1; deque<int> que = {source}; while(ssize(que) and dist[sink] == 0) { int v = que.front(); que.pop_front(); for(int e : graph[v]) if(edges[e].flow != edges[e].cap and dist[edges[e].u] == 0) { dist[edges[e].u] = dist[v] + 1; que.emplace_back(edges[e].u); } } return dist[sink] != 0; } vector<int> ended_at; T dfs(int v, int sink, T flow = numeric_limits<T>::max()) { if(flow == 0 or v == sink) return flow; for(; ended_at[v] != ssize(graph[v]); ++ended_at[v]) { Edge &e = edges[graph[v][ended_at[v]]]; if(dist[v] + 1 == dist[e.u]) if(T pushed = dfs(e.u, sink, min(flow, e.cap - e.flow))) { e.flow += pushed; edges[graph[v][ended_at[v]] ^ 1].flow -= pushed; return pushed; } } return 0; } T operator()(int source, int sink) { T answer = 0; while(true) { if(not bfs(source, sink)) break; ended_at.assign(n, 0); while(T pushed = dfs(source, sink)) answer += pushed; } return answer; } map<pair<int, int>, T> get_flowing() { map<pair<int, int>, T> ret; REP(v, n) for(int i : graph[v]) { if(i % 2) // considering only original edges continue; Edge &e = edges[i]; ret[make_pair(v, e.u)] = e.flow; } return ret; } }; int main() { cin.tie(0)->sync_with_stdio(0); int n, m, k; cin >> n >> m >> k; const int S = 2 * n; const int T = 2 * n + 1; Dinic dinic(2 * n + 2); REP(i,k) { dinic.add_edge(S, i, 1); } REP(i,n) { dinic.add_edge(i, i + n, 1); } REP(i,m) { int a, b; cin >> a >> b; --a; --b; dinic.add_edge(a + n, b, 1); } vector<LL> ans(k + 1); FOR(i,k,n-1) { int sum = 0; FOR(j,i,n-1) { dinic.add_edge(j + n, T, 1); sum += dinic(S, T); ++ans[sum]; debug(i, j, sum); } dinic(T, S); FOR(j,i,n-1) { dinic.del_edge(j + n, T); } } REP(i,k+1) { cout << ans[i] << '\n'; } } |