1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <algorithm>
#include <iostream>
#include <vector>
#include <iomanip>
// #include "../../simple-console-debug/debug.h"
using namespace std;
typedef long long ll;

struct Zone{
    int pos, len;
};

struct PersistentTree {
    struct Node {
        Node *left, *right;
        int sum;
    };
    int tree_size;
    vector<Node*>Roots;
    vector<Node*>all_nodes;

    Node* recursive_build_empty_tree(int n){
        Node *node = new Node;
        all_nodes.push_back(node);
        node->sum = 0;
        if(n>1) {
            node->left = recursive_build_empty_tree(n/2);
            node->right = recursive_build_empty_tree(n/2);
        }
        else
            node->left = node->right = nullptr;
        return node;
    }
    PersistentTree(int n){
        tree_size = 1;
        while (tree_size < n)
            tree_size *= 2;
        
        Roots.push_back(recursive_build_empty_tree(tree_size));
    }

    ~PersistentTree(){
        for (Node* node : all_nodes)
            delete node;
    }

    Node* _set(Node* node, int pos, int ts) { //pos is relative to left
        if (ts==1) {
            Node *new_node = new Node;
            all_nodes.push_back(new_node);
            new_node->sum = 1;
            new_node->left = new_node->right = nullptr;
            return new_node;
        }

        Node* new_node = new Node(*node);
        all_nodes.push_back(new_node);

        if (pos < ts/2)
            new_node->left = _set(node->left, pos, ts/2);
        else 
            new_node->right = _set(node->right, pos-ts/2, ts/2);
        
        new_node->sum = new_node->left->sum + new_node->right->sum;
        return new_node;
    }
    int set(int pos) {
        Node* new_root = _set(Roots.back(), pos, tree_size);
        Roots.push_back(new_root);
        return Roots.size()-1;
    }

    //returned position is relative to left
    int _find_first_one_position(Node* node, int ts) { 
        //assuming than node->sum > 0
        if (ts == 1)
            return 0;
        if (node->left->sum > 0)
            return _find_first_one_position(node->left, ts/2);
        else
            return ts/2 + _find_first_one_position(node->right, ts/2);
    }
    //returned position and target_pos is relative to left
    int _find_one(Node* node, int target_pos, int ts) {
        //phase A - go down
        if (ts == 1)
            return -1;
        if (target_pos < ts/2) {
            int resp = _find_one(node->left, target_pos, ts/2);
            if (resp != -1)
                return resp;
            if (node->right->sum == 0)  
                return -1;
            return _find_first_one_position(node->right, ts/2) + ts/2;
        }
        else {
            int resp = _find_one(node->right, target_pos-ts/2, ts/2);
            if (resp == -1)
                return -1;
            else
                return resp + ts/2;
        }
    }
    int find_first_one_greater_than(int revision, int init_pos) {
        // cerr << "revision = " << revision  << " per " << Roots.size() << endl;
        return _find_one(Roots[revision], init_pos, tree_size);
    }
};

ostream& operator<<(ostream& os, const Zone &z) {
    return os << "{" << z.pos << ", " << z.len << "}";
}

struct MR {
    static int d1, d2, d3;
    ll g1, g2, g3;

    MR():g1(0),g2(0),g3(0){}
    MR(ll g1, ll g2, ll g3):g1(g1),g2(g2),g3(g3){}

    MR operator+(const MR& mr) const {
        return MR(g1+mr.g1, g2+mr.g2, g3+mr.g3);
    }

    MR operator-(const MR& mr) const {
        return MR(g1-mr.g1, g2-mr.g2, g3-mr.g3);
    }

    MR operator*(int x) const {
        return MR(g1*x, g2*x, g3*x);
    }

    bool operator<(const MR& r) const {
        return g1*d2*d3 + g2*d1*d3 + g3*d1*d2 < r.g1*d2*d3 + r.g2*d1*d3 + r.g3*d1*d2;
    }

    double get_value() const {
        return (double)g1/d1 + (double)g2/d2 + (double)g3/d3;
    }
};
int MR::d1, MR::d2, MR::d3;
//d1 = forward_velocity
//d2 = my_velocity
//d3 = backward_velocity

pair<bool, MR> move_to_next_zone_forward(MR t0, Zone from, Zone via, bool infinite_via, Zone to) {
    int from_end = from.pos+from.len;
    int via_end = via.pos+via.len;

    //phase 1 -> go to end of own zone
    MR t1 = t0 + MR(0,from.len,0); 

    //check whether possible
    if (MR(from_end-via.pos,0,0) < t1)
        return {false, MR()};

    //phase 2 -> go to target in advance
    MR t2 = t1 + MR(0,to.pos-from_end,0);

    //phase 3 -> wait for zone arrival
    MR t3;
    if (infinite_via)
        t3 = t2;
    else
        t3 = max(MR(to.pos-via_end,0,0), t2);

    return {true, t3};
}

pair<bool, MR> move_to_next_zone_backward(MR t0, Zone from, Zone via, bool infinite_via, Zone to) {
    // cerr << "BACKWARD t0=" << t0.get_value() << " from=" << from << " via=" << via << " to=" << to << endl;

    int from_end = from.pos+from.len;
    int via_end = via.pos+via.len;

    //phase 1 -> go to end of own zone
    MR t1 = t0 + MR(0,from.len,0); 

    //phase 2 -> wait for zone arrival
    // cerr << "bw_vel=" << MR::d3 << " dist=" << via.pos-from_end << endl;
    MR t2 = max(MR(0,0,via.pos-from_end), t1);

    //phase 3 -> go to begin of next zone
    MR t3 = t2 + MR(0,to.pos-from_end,0);

    // cerr << "t0=" << t0.get_value() << " t1=" << t2.get_value() << " t2=" << t2.get_value() << " t3=" << t3.get_value() << endl;

    //verify result
    if (!infinite_via && MR(0,0,via_end-to.pos) < t3)
        return {false, MR()};
    return {true, t3};
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int L, v0, v1, v2, v3;
    cin >> L >> v0 >> v1 >> v2 >> v3;

    //transform to zone notation
    vector<Zone>RoadZones[3]; //forward, central, backward
    for(int r = 0; r < 3; r++) {
        string str;
        cin >> str;

        str[0] = '.';
        str += ".#";

        for(int i = 1, zone_start = 0; i < (int)str.length() ;i++)
            if (zone_start != -1 && str[i] == '#') {
                RoadZones[r].push_back(Zone{.pos=zone_start, .len=i-zone_start-1});
                zone_start = -1;
            }
            else if (zone_start == -1 && str[i]=='.')
                zone_start = i;
    }

    // cerr << "FORAWRD ZONES: " << deb::Container(RoadZones[0]) << endl;
    // cerr << "CENTER ZONES: " << deb::Container(RoadZones[1]) << endl;
    // cerr << "BACKWARD ZONES: " << deb::Container(RoadZones[2]) << endl;

    MR::d1 = v1-v2;
    MR::d2 = v0-v2;
    MR::d3 = -(v3-v2);

    //prepare structures
    vector<MR> ForwardInitPosition;
    for (Zone z : RoadZones[0])
        ForwardInitPosition.push_back(MR(z.pos, 0, 0));
    
    vector<MR> BackwardInitPosition;
    for (int i=0; i<(int)RoadZones[2].size(); i++) {
        Zone &z = RoadZones[2][i];
        BackwardInitPosition.push_back(MR(0, 0, z.pos+z.len));
    }

    vector<pair<ll,int>> BackwardLenSorted; //len*(v_my + v_bw), original id
    for (int i=0; i<(int)RoadZones[2].size(); i++)
        BackwardLenSorted.push_back({ll(RoadZones[2][i].len)*MR::d2, i});
    sort(BackwardLenSorted.begin(), BackwardLenSorted.end());

    PersistentTree tree(RoadZones[2].size());
    for(int i=BackwardLenSorted.size()-1; i>=0; i--) {
        int revision = tree.set(BackwardLenSorted[i].second);
        BackwardLenSorted[i].second = revision;
    }

    // cerr << "BLS : " << deb::Container(BackwardLenSorted) << endl;

    //get distances to middle road zones

    int mz = RoadZones[1].size();
    vector<MR>ArrTime(mz);

    for (int i=1; i<mz; i++) {
        bool inserted_anything = false;
        auto new_prop = [&](pair<bool,MR> t){
            if (t.first && (!inserted_anything || t.second<ArrTime[i])) {
                ArrTime[i] = t.second;
                inserted_anything = true;
            }
        };

        Zone from = RoadZones[1][i-1];
        Zone to = RoadZones[1][i];
        int from_end = from.pos+from.len;
        MR t_from_end = ArrTime[i-1] + MR(0,from.len,0);

        //forward road
        int fzi = upper_bound(ForwardInitPosition.begin(), ForwardInitPosition.end(), MR(from_end,0,0)-t_from_end) - ForwardInitPosition.begin() - 1;
        if (fzi>=0 && fzi<(int)RoadZones[0].size())
            new_prop(move_to_next_zone_forward(ArrTime[i-1], from, RoadZones[0][fzi], fzi+1==RoadZones[0].size(), to));

        //backward road
        new_prop(move_to_next_zone_backward(ArrTime[i-1], from, RoadZones[2].back(), true, to)); //last backward manually
        int bzi = lower_bound(BackwardInitPosition.begin(), BackwardInitPosition.end(), MR(0,0,from_end)+t_from_end) - BackwardInitPosition.begin(); //find first intersecting
        if (bzi<(int)RoadZones[2].size()) {
            // cerr << "bzi = " << bzi << endl;
            new_prop(move_to_next_zone_backward(ArrTime[i-1], from, RoadZones[2][bzi], bzi+1==RoadZones[2].size(), to)); //try first intersecting
            int delta = to.pos - from_end;
            ll size_bound = delta*(MR::d2+MR::d3); //calculate size bound

            // for (int j=bzi+1; j<(int)RoadZones[2].size(); j++)
            //     if (RoadZones[2][j].len*MR::d2 >= size_bound) {
            //         // new_prop(move_to_next_zone_backward(ArrTime[i-1], from, RoadZones[2][j], j+1==RoadZones[2].size(), to));
            //         cerr << "brute found " << j << endl;
            //         break;
            //     }

            auto lenSortedIt = lower_bound(BackwardLenSorted.begin(), BackwardLenSorted.end(), pair<ll,int>{size_bound, -42}); //look for revision with all and only greater than size_bound
            if (lenSortedIt != BackwardLenSorted.end()) {
                int first_greater = tree.find_first_one_greater_than(lenSortedIt->second, bzi); //get id of first big enough zone later than bzi
                // cerr << "tree found " << first_greater << endl;
                if (first_greater != -1)
                    new_prop(move_to_next_zone_backward(ArrTime[i-1], from, RoadZones[2][first_greater], first_greater+1==(int)RoadZones[2].size(), to));
            }

        }
        
        // cerr << "Arrival time of zone " << i << " = " << ArrTime[i].get_value() << endl;
    }

    //go final straight
    double t = ArrTime.back().get_value();
    double time_to_beat_forward = max(0.0, (RoadZones[0].back().pos - RoadZones[1].back().pos + MR::d1*t)/(MR::d2-MR::d1));
    double time_to_beat_backward = max(0.0, (RoadZones[2].back().pos - MR::d3*t - RoadZones[1].back().pos)/(MR::d3+MR::d2));
    cout << fixed << setprecision(15) << t+max(time_to_beat_backward, time_to_beat_forward) << "\n";

    return 0;
}