#include <bits/stdc++.h> #define st first #define nd second typedef long long int lli; typedef std::pair<int, int> par; const int MAXN = 300'005; lli v[MAXN]; lli sum[MAXN]; lli dp[MAXN]; std::vector<par> req[MAXN]; int maxr[MAXN]; lli ans[MAXN]; lli interval[MAXN]; // sum on k-interval ending in i int req_bounds[MAXN][2]; lli d[MAXN * 5]; lli dpow; lli read_max(int x, int p, int k, int pp, int kk) { if (p == pp && k == kk) return d[x]; int s = (pp+kk)/2; if (k <= s) return read_max(2*x, p, k, pp, s); if (p >= s) return read_max(2*x+1, p, k, s, kk); return std::max(read_max(2*x, p, s, pp, s), read_max(2*x+1, s, k, s, kk)); } int main() { int n, k, q; scanf("%d%d%d", &n, &k, &q); for (int i=1; i<=n; i++) { scanf("%lld", &v[i]); sum[i] = sum[i-1] + v[i]; } for (int i=k; i<=n; i++) { interval[i] = sum[i] - sum[i-k]; } // Fill max tree. Useful when interval is smaller than 2k. dpow = 1; while (dpow <= n) dpow *= 2; for (int i=0; i<=n; i++) d[dpow+i] = interval[i]; for (int i=dpow-1; i>0; i--) d[i] = std::max(d[2*i], d[2*i+1]); int a, b; for (int i=1; i<=q; i++) { scanf("%d%d", &a, &b); if (b-a+1 < 2*k) { // fprintf(stderr, "used\n"); // only a single interval fits. if (b-a+1 < k) ans[i] = 0; else ans[i] = read_max(1, a+k-1, b+1, 0, dpow); ans[i] = std::max(ans[i], 0LL); continue; } req_bounds[i][0] = a; req_bounds[i][1] = b; if ((a / k) % 2 == 0) { // push int rem = a%k; int base = a - rem; for (int j=rem; j<=k; j++) { if (base+j+k <= n && base+j+k <= b && j<k) { if (interval[base+j+k-1] <= 0) continue; req[base+j+k].push_back({b, -i}); maxr[base+j+k] = std::max(maxr[base+j+k], b); } else { req[base+j].push_back({b, -MAXN-i}); maxr[base+j] = std::max(maxr[base+j], b); continue; } } } else { req[a].push_back({b, i}); maxr[a] = std::max(maxr[a], b); } } for (int beg=n; beg>0; beg--) { if (req[beg].empty()) continue; // printf("computing for %d\n", beg); for (int i=beg+k-1; i<=maxr[beg]; i++) { dp[i] = std::max(dp[i-1], dp[i-k] + interval[i]); } for (const auto &r : req[beg]) { // printf("request %d %d\n", r.st, r.nd); if (r.nd > 0) { ans[r.nd] = dp[r.st]; } else { if (r.nd < -MAXN) { ans[-(r.nd+MAXN)] = std::max(ans[-(r.nd+MAXN)], dp[r.st]); } else { ans[-r.nd] = std::max(ans[-r.nd], dp[r.st] + interval[beg - 1]); // printf("dp %lld, interval %lld\n", dp[r.st], interval[beg - 1]); // printf("ans %d -> %lld\n", -r.nd, ans[-r.nd]); } } } } for (int i=1; i<=q; i++) { printf("%lld\n", ans[i]); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | #include <bits/stdc++.h> #define st first #define nd second typedef long long int lli; typedef std::pair<int, int> par; const int MAXN = 300'005; lli v[MAXN]; lli sum[MAXN]; lli dp[MAXN]; std::vector<par> req[MAXN]; int maxr[MAXN]; lli ans[MAXN]; lli interval[MAXN]; // sum on k-interval ending in i int req_bounds[MAXN][2]; lli d[MAXN * 5]; lli dpow; lli read_max(int x, int p, int k, int pp, int kk) { if (p == pp && k == kk) return d[x]; int s = (pp+kk)/2; if (k <= s) return read_max(2*x, p, k, pp, s); if (p >= s) return read_max(2*x+1, p, k, s, kk); return std::max(read_max(2*x, p, s, pp, s), read_max(2*x+1, s, k, s, kk)); } int main() { int n, k, q; scanf("%d%d%d", &n, &k, &q); for (int i=1; i<=n; i++) { scanf("%lld", &v[i]); sum[i] = sum[i-1] + v[i]; } for (int i=k; i<=n; i++) { interval[i] = sum[i] - sum[i-k]; } // Fill max tree. Useful when interval is smaller than 2k. dpow = 1; while (dpow <= n) dpow *= 2; for (int i=0; i<=n; i++) d[dpow+i] = interval[i]; for (int i=dpow-1; i>0; i--) d[i] = std::max(d[2*i], d[2*i+1]); int a, b; for (int i=1; i<=q; i++) { scanf("%d%d", &a, &b); if (b-a+1 < 2*k) { // fprintf(stderr, "used\n"); // only a single interval fits. if (b-a+1 < k) ans[i] = 0; else ans[i] = read_max(1, a+k-1, b+1, 0, dpow); ans[i] = std::max(ans[i], 0LL); continue; } req_bounds[i][0] = a; req_bounds[i][1] = b; if ((a / k) % 2 == 0) { // push int rem = a%k; int base = a - rem; for (int j=rem; j<=k; j++) { if (base+j+k <= n && base+j+k <= b && j<k) { if (interval[base+j+k-1] <= 0) continue; req[base+j+k].push_back({b, -i}); maxr[base+j+k] = std::max(maxr[base+j+k], b); } else { req[base+j].push_back({b, -MAXN-i}); maxr[base+j] = std::max(maxr[base+j], b); continue; } } } else { req[a].push_back({b, i}); maxr[a] = std::max(maxr[a], b); } } for (int beg=n; beg>0; beg--) { if (req[beg].empty()) continue; // printf("computing for %d\n", beg); for (int i=beg+k-1; i<=maxr[beg]; i++) { dp[i] = std::max(dp[i-1], dp[i-k] + interval[i]); } for (const auto &r : req[beg]) { // printf("request %d %d\n", r.st, r.nd); if (r.nd > 0) { ans[r.nd] = dp[r.st]; } else { if (r.nd < -MAXN) { ans[-(r.nd+MAXN)] = std::max(ans[-(r.nd+MAXN)], dp[r.st]); } else { ans[-r.nd] = std::max(ans[-r.nd], dp[r.st] + interval[beg - 1]); // printf("dp %lld, interval %lld\n", dp[r.st], interval[beg - 1]); // printf("ans %d -> %lld\n", -r.nd, ans[-r.nd]); } } } } for (int i=1; i<=q; i++) { printf("%lld\n", ans[i]); } return 0; } |