1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include<bits/stdc++.h>
using namespace std;
using LL=long long;
#define FOR(i,l,r) for(int i=(l);i<=(r);++i)
#define REP(i,n) FOR(i,0,(n)-1)
#define ssize(x) int(x.size())
template<class A,class B>auto&operator<<(ostream&o,pair<A,B>p){return o<<'('<<p.first<<", "<<p.second<<')';}
template<class T>auto operator<<(ostream&o,T x)->decltype(x.end(),o){o<<'{';int i=0;for(auto e:x)o<<(", ")+2*!i++<<e;return o<<'}';}
#ifdef DEBUG
#define debug(x...) cerr<<"["#x"]: ",[](auto...$){((cerr<<$<<"; "),...)<<'\n';}(x)
#else
#define debug(...) {}
#endif

/*
 * Opis: Struktura do działań modulo
 * Czas: O(1), dzielenie O(\log mod)
 * Użycie: Ustaw modulo w ostatniej linii. Jeśli modulo nie jest const, usuń pierwszy wiersz i zadeklaruj mod
 */

template<int mod>
struct modular {
	int val;
	modular() { val = 0; }
	modular(const LL& v) {
		val = int((-mod <= v && v < mod) ? (int) v : v % mod);
		if(val < 0) val += mod;
	}
	int to_int() { return val; }

	friend ostream& operator<<(ostream &os, const modular &a) {
#ifdef DEBUG
		constexpr int mx = 1024;
		for(int y = 1; y <= mx; ++y)
			if(a * y <= mx)
				return os << (a * y).val << '/' << y;
			else if(mod - a * y <= mx)
				return os << '-' << (mod - a * y).val << '/' << y;
#endif
		return os << a.val;
	}
	friend istream& operator>>(istream &is, modular &a) {
		return is >> a.val;
	}

	friend bool operator==(const modular &a, const modular &b) {
		return a.val == b.val;
	}
	friend bool operator!=(const modular &a, const modular &b) {
		return !(a == b);
	}
	friend bool operator<(const modular &a, const modular &b) {
		return a.val < b.val;
	}
	friend bool operator<=(const modular &a, const modular &b) {
		return a.val <= b.val;
	}

	modular operator-() const { return modular(-val); }
	modular& operator+=(const modular &m) {
		if((val += m.val) >= mod) val -= mod;
		return *this;
	}
	modular& operator-=(const modular &m) {
		if((val -= m.val) < 0) val += mod;
		return *this;
	}
	modular& operator*=(const modular &m) {
		val = int((LL) val * m.val % mod);
		return *this;
	}
	friend modular qpow(modular a, LL n) {
		if(n == 0) return 1;
		if(n % 2 == 1) return qpow(a, n - 1) * a;
		return qpow(a * a, n / 2);
	}
	friend modular inv(const modular &a) {
		assert(a != 0); return qpow(a, mod - 2);
	}
	modular& operator/=(const modular &m) { 
		return (*this) *= inv(m); 
	}
	modular operator++(int) {
		modular res = (*this);
		(*this) += 1;
		return res;
	}

	friend modular operator+(modular a, const modular &b) { return a += b; }
	friend modular operator-(modular a, const modular &b) { return a -= b; }
	friend modular operator*(modular a, const modular &b) { return a *= b; }
	friend modular operator/(modular a, const modular &b) { return a /= b; }
};
using mint = modular<int(1e9 + 7)>;

int main() {
	cin.tie(0)->sync_with_stdio(0);
	int n, m = 0;
	cin >> n;
	vector<vector<int>> t(n);
	REP (i, n) {
		string s;
		cin >> s;
		t[i].resize(ssize(s) + 1);
		REP (j, ssize(s)) {
			if (s[j] == 'L')
				t[i][j + 1] = 0;
			else
				t[i][j + 1] = 1;
		}
		m = max(m, ssize(s));
	}

	vector<vector<mint>> pref_lf(n), pref_rg(n), suff_lf(n), suff_rg(n);

	vector odp(n, vector<mint>(n));
	vector<mint> all(n);

	REP (i, n) {
		int d = ssize(t[i]) - 1;
		vector nxt(d + 2, vector (2, d + 1));
		for (int j = d - 1; j >= 0; --j) {
			REP (k, 2)
				nxt[j][k] = nxt[j + 1][k];
			nxt[j][t[i][j + 1]] = j + 1;
		}

		vector dp(d + 2, vector<mint>(m + 2));
		dp[0][0] = 1;
		pref_lf[i].resize(m + 2);
		pref_rg[i].resize(m + 2);

		REP (j, d + 1) {
			if (j)
				all[i] += dp[j][0];

			REP (k, m + 1) {
				if (nxt[j][0] == d + 1) {
					pref_lf[i][k + 1] += dp[j][k];
				}
				else {
					dp[nxt[j][0]][k + 1] += dp[j][k];
				}
				if (k) {
					if (nxt[j][1] == d + 1) {
						pref_rg[i][k - 1] += dp[j][k];
					}
					else {
						dp[nxt[j][1]][k - 1] += dp[j][k];
					}
				}
			}
		}
		
		vector pd(d + 2, vector<mint>(m + 2));
		for (int j = d; j; --j) {
			pd[j][0] = 1;
			REP (k, m + 1) {
				pd[j][k] += pd[nxt[j][0]][k + 1];
				if (k)
					pd[j][k] += pd[nxt[j][1]][k - 1];
			}
		}
		suff_lf[i] = pd[nxt[0][0]];
		suff_rg[i] = pd[nxt[0][1]];
	}
	REP (i, n)
		debug(i, pref_lf[i]);
	REP (i, n)
		debug(i, suff_lf[i]);
	REP (i, n)
		debug(i, pref_rg[i]);
	REP (i, n)
		debug(i, suff_rg[i]);

	REP (i, n) {
		REP (j, n) {
			odp[i][j] += all[i];
			REP (k, m + 2) {
				odp[i][j] += pref_lf[i][k] * suff_lf[j][k] + pref_rg[i][k] * suff_rg[j][k];
			}
		}
	}

	REP (i, n) {
		REP (j, n) {
			if (j)
				cout << ' ';
			cout << odp[i][j];
		}
		cout << '\n';
	}
}