#include <iostream> #include <vector> #include <algorithm> #include <functional> #include <stack> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t; cin >> t; while (t--) { int n, m, k; cin >> n >> m >> k; // input vector<pair<int,int>>Pairs(m); for (auto& p : Pairs) { cin >> p.first >> p.second; p.first--; p.second--; if (p.first > p.second) swap(p.first, p.second); } sort(Pairs.begin(), Pairs.end()); Pairs.erase(unique(Pairs.begin(), Pairs.end()), Pairs.end()); // transform to the graph vector<vector<int>>G(n); vector<int>Degs(n); for (auto& p : Pairs) { G[p.first].push_back(p.second); Degs[p.first]++; G[p.second].push_back(p.first); Degs[p.second]++; } // perform vertex cover on it vector<bool>InCover(n); vector<bool>CanBeInGoodCover(n); auto report_solution = [&](int k_used) { if (k_used < k) { k = k_used; fill(CanBeInGoodCover.begin(), CanBeInGoodCover.end(), false); } }; auto vertex_cover_small_deg = [&](int k_used) -> int { vector<bool>LocalInCover(InCover); vector<int>ToDel; int result = 0; // paths for (int i = 0; i < n; i++) if (!LocalInCover[i] && Degs[i] == 1) { vector<int>Path; for (int v = i;;) { LocalInCover[v] = true; Path.push_back(v); int new_v = -1; for (int nei : G[v]) if (!LocalInCover[nei]) { new_v = nei; break; } if (new_v == -1) break; else v = new_v; } result += Path.size() / 2; if (result + k_used > k) return numeric_limits<int>::max(); if (Path.size() % 2 == 0) for (int x : Path) ToDel.push_back(x); else for (int i = 1; i < (int)Path.size(); i+=2) ToDel.push_back(Path[i]); } // cycles for (int i = 0; i < n; i++) if (!LocalInCover[i] && Degs[i] == 2) { int cycle_len = 0; for (int v = i;;) { ToDel.push_back(v); LocalInCover[v] = true; cycle_len++; int new_v = -1; for (int nei : G[v]) if (!LocalInCover[nei]) { new_v = nei; break; } if (new_v == -1) break; else v = new_v; } result += (cycle_len + 1) / 2; if (result + k_used > k) return numeric_limits<int>::max(); } report_solution(k_used + result); for (int x : ToDel) CanBeInGoodCover[x] = true; return k_used + result; }; function<int(int)> vertex_cover = [&](int k_used) -> int { // returns min k_used found, INT_MAX on failure // helpers auto add_to_cover = [&](int v) { InCover[v] = true; for (int nei : G[v]) Degs[nei]--; }; auto remove_from_cover = [&](int v) { InCover[v] = false; for (int nei : G[v]) Degs[nei]++; }; // get stats, find next target int max_deg_val = -1, max_deg_i = -1; for (int i = 0; i < n; i++) if (!InCover[i] && Degs[i] > max_deg_val) { max_deg_val = Degs[i]; max_deg_i = i; } // special cases if (max_deg_val == 0) { report_solution(k_used); return k_used; } if (max_deg_val <= 2) { int used = vertex_cover_small_deg(k_used); if (used == k) return used; else return numeric_limits<int>::max(); } // general case (maxdeg >= 3) int result = numeric_limits<int>::max(); if (k - k_used >= 1) { add_to_cover(max_deg_i); int subres = vertex_cover(k_used + 1); if (subres == k) CanBeInGoodCover[max_deg_i] = true; result = min(result, subres); remove_from_cover(max_deg_i); } if (k - k_used >= max_deg_val) { stack<int>S; for (int nei : G[max_deg_i]) if (!InCover[nei]) { add_to_cover(nei); S.push(nei); } int subres = vertex_cover(k_used + max_deg_val); result = min(result, subres); while (!S.empty()) { remove_from_cover(S.top()); if (subres == k) CanBeInGoodCover[S.top()] = true; S.pop(); } } return result; }; int res = vertex_cover(0); if (res == numeric_limits<int>::max()) { cout << "-1\n"; continue; } else { int CBIGCnumber = 0; for (int i = 0; i < n; i++) if (CanBeInGoodCover[i]) CBIGCnumber++; cout << res << " " << CBIGCnumber << "\n"; for (int i = 0; i < n; i++) if (CanBeInGoodCover[i]) cout << i + 1 << " "; cout << "\n"; } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | #include <iostream> #include <vector> #include <algorithm> #include <functional> #include <stack> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t; cin >> t; while (t--) { int n, m, k; cin >> n >> m >> k; // input vector<pair<int,int>>Pairs(m); for (auto& p : Pairs) { cin >> p.first >> p.second; p.first--; p.second--; if (p.first > p.second) swap(p.first, p.second); } sort(Pairs.begin(), Pairs.end()); Pairs.erase(unique(Pairs.begin(), Pairs.end()), Pairs.end()); // transform to the graph vector<vector<int>>G(n); vector<int>Degs(n); for (auto& p : Pairs) { G[p.first].push_back(p.second); Degs[p.first]++; G[p.second].push_back(p.first); Degs[p.second]++; } // perform vertex cover on it vector<bool>InCover(n); vector<bool>CanBeInGoodCover(n); auto report_solution = [&](int k_used) { if (k_used < k) { k = k_used; fill(CanBeInGoodCover.begin(), CanBeInGoodCover.end(), false); } }; auto vertex_cover_small_deg = [&](int k_used) -> int { vector<bool>LocalInCover(InCover); vector<int>ToDel; int result = 0; // paths for (int i = 0; i < n; i++) if (!LocalInCover[i] && Degs[i] == 1) { vector<int>Path; for (int v = i;;) { LocalInCover[v] = true; Path.push_back(v); int new_v = -1; for (int nei : G[v]) if (!LocalInCover[nei]) { new_v = nei; break; } if (new_v == -1) break; else v = new_v; } result += Path.size() / 2; if (result + k_used > k) return numeric_limits<int>::max(); if (Path.size() % 2 == 0) for (int x : Path) ToDel.push_back(x); else for (int i = 1; i < (int)Path.size(); i+=2) ToDel.push_back(Path[i]); } // cycles for (int i = 0; i < n; i++) if (!LocalInCover[i] && Degs[i] == 2) { int cycle_len = 0; for (int v = i;;) { ToDel.push_back(v); LocalInCover[v] = true; cycle_len++; int new_v = -1; for (int nei : G[v]) if (!LocalInCover[nei]) { new_v = nei; break; } if (new_v == -1) break; else v = new_v; } result += (cycle_len + 1) / 2; if (result + k_used > k) return numeric_limits<int>::max(); } report_solution(k_used + result); for (int x : ToDel) CanBeInGoodCover[x] = true; return k_used + result; }; function<int(int)> vertex_cover = [&](int k_used) -> int { // returns min k_used found, INT_MAX on failure // helpers auto add_to_cover = [&](int v) { InCover[v] = true; for (int nei : G[v]) Degs[nei]--; }; auto remove_from_cover = [&](int v) { InCover[v] = false; for (int nei : G[v]) Degs[nei]++; }; // get stats, find next target int max_deg_val = -1, max_deg_i = -1; for (int i = 0; i < n; i++) if (!InCover[i] && Degs[i] > max_deg_val) { max_deg_val = Degs[i]; max_deg_i = i; } // special cases if (max_deg_val == 0) { report_solution(k_used); return k_used; } if (max_deg_val <= 2) { int used = vertex_cover_small_deg(k_used); if (used == k) return used; else return numeric_limits<int>::max(); } // general case (maxdeg >= 3) int result = numeric_limits<int>::max(); if (k - k_used >= 1) { add_to_cover(max_deg_i); int subres = vertex_cover(k_used + 1); if (subres == k) CanBeInGoodCover[max_deg_i] = true; result = min(result, subres); remove_from_cover(max_deg_i); } if (k - k_used >= max_deg_val) { stack<int>S; for (int nei : G[max_deg_i]) if (!InCover[nei]) { add_to_cover(nei); S.push(nei); } int subres = vertex_cover(k_used + max_deg_val); result = min(result, subres); while (!S.empty()) { remove_from_cover(S.top()); if (subres == k) CanBeInGoodCover[S.top()] = true; S.pop(); } } return result; }; int res = vertex_cover(0); if (res == numeric_limits<int>::max()) { cout << "-1\n"; continue; } else { int CBIGCnumber = 0; for (int i = 0; i < n; i++) if (CanBeInGoodCover[i]) CBIGCnumber++; cout << res << " " << CBIGCnumber << "\n"; for (int i = 0; i < n; i++) if (CanBeInGoodCover[i]) cout << i + 1 << " "; cout << "\n"; } } return 0; } |