1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <bits/stdc++.h>
 
#define INF 2147483647
#define LINF 9223372036854775807
#define NINF -2147483648
#define NLINF -9223372036854775808
#define M 1000000007
#define M1 998244353
#define A 26
#define K 31
#define P 2137
 
using namespace std;
using db=double;
using dbl=long double;
using ll=long long;
using pi=pair<int,int>;
using pl=pair<ll,ll>;
using vi=vector<int>;
using vl=vector<ll>;
using gr=vector<vector<int> >;
using grl=vector<vector<ll> >;

 
#define fp(x, a, b) for (int (x) = (a); (x) < (b); (x)++)
#define f(x, n) for (int (x) = 0; (x) < (n); (x)++)
#define fnp(x, a, b) for (int (x) = (b) - 1; (x) >= (a); (x)--)
#define fn(x, n) for (int (x) = (n - 1); (x) >= 0; (x)--)
#define sgn(x) (x) > 0 ? 1 : (x) == 0 ? 0 : -1
#define gcd(a, b) __gcd((a), (b))
#define lcm(a, b) (a) * (b) / gcd((a), (b))
#define x first
#define y second
#define mp make_pair 
#define pb push_back
#define s(x) x.size()
#define all(x) x.begin(), x.end()
#define ans(x) cout<<(x)<<"\n"
#define yes cout<<"YES\n";
#define no cout<<"NO\n";
#define fl cout.flush()
#define debarr(x, n) f(i, (n)){cout<<(x)[i]<<" ";}cout<<"\n"
#define debgr(x, n) f(i, (n)){f(j, s((x)[i])){cout<<(x)[i][j]<<" ";}cout<<"\n";}

 
mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());


 
void input();
void compute();
 
int main() {
	int T = 1;
	//cin >> T;
	while(T--) {
		input();
		compute();
	}
	return 0;
}

#define N 100001
 
int n;
int k;
int v[2][N];
pi pos[2 * N];
bool visited[2 * N];
int onionNum;
pi dsu[2 * N];
ll w[10];

void input() {
	scanf("%d%d", &n, &k);
	f(i, n) {
		scanf("%d", &v[0][i]);
		v[0][i]--;
		pos[v[0][i]].x = 0;
		pos[v[0][i]].y = i;
	}
	f(i, n) {
		scanf("%d", &v[1][i]);
		v[1][i]--;
		pos[v[1][i]].x = 1;
		pos[v[1][i]].y = i;
	}
}

int find(int a) {
	if(a != dsu[a].x)
		dsu[a].x = find(dsu[a].x);
	return dsu[a].x;
}

void onion(int a, int b) {
	if(dsu[a].y > dsu[b].y)
		swap(a, b);
	dsu[a].x = b;
	dsu[b].y += dsu[a].y;
}

void compute() {
	f(i, n * 2) {
		onionNum = 0;
		f(j, n * 2) {
			visited[j] = false;
			dsu[j].x = j;
			dsu[j].y = 1;
		}
		fp(j, i, n * 2) {
			visited[j] = true;
			int x = pos[j].x;
			int y = pos[j].y;
			if((visited[v[(x + 1) % 2][y]]) && find(dsu[v[(x + 1) % 2][y]].x) != find(dsu[v[x][y]].x)) {
				onion(find(v[(x + 1) % 2][y]), find(v[x][y]));
				onionNum--;
			}
			if((visited[v[x][(y - 1 + n) % n]]) && find(dsu[v[x][(y - 1 + n) % n]].x) != find(dsu[v[x][y]].x)) {
				onion(find(v[x][(y - 1 + n) % n]), find(v[x][y]));
				onionNum--;
			}
			if((visited[v[x][(y + 1) % n]]) && find(dsu[v[x][(y + 1) % n]].x) != find(dsu[v[x][y]].x)) {
				onion(find(v[x][(y + 1) % n]), find(v[x][y]));
				onionNum--;
			}
			onionNum++;
			if(onionNum <= k) {
				w[onionNum - 1]++;
			}
		}
	}
	f(i, k) {
		printf("%lld ", w[i]);
	}
	printf("\n");
}