1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <bits/stdc++.h>
#include <chrono>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace chrono;
using namespace __gnu_pbds;
#pragma GCC optimize("Ofast,unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,fma,tune=native")
//#pragma GCC target("sse,sse2,sse3,mmx,abm,tune=native") // for szkopul and sio only
typedef long long lld;
typedef double lf;
typedef long double llf;
typedef pair<int,int> pii;
typedef pair<lld,lld> pll;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> oset;
#define For(i,s,a) for(lld i = (lld)s; i < (lld)a; ++i)
#define rpt(s, it) for(auto it = s.begin(); it != s.end(); ++it)
#define brpt(s, it) for(auto it = s.rend(); it != s.rbegin(); --it)
#define pb push_back
#define eb emplace_back
#define ff first
#define dd second
#define mp make_pair
#define all(x) (x).begin(), (x).end()
#define make_unique(x) (x).erase( unique(all(x)), (x).end())
#define popcnt(x) __builtin_popcount(x)
#define sz size()
#define time_since duration_cast< milliseconds >(system_clock::now().time_since_epoch())
 
template<typename Ta, typename Tb>
ostream & operator <<(ostream & os, pair<Ta, Tb> x){
    return os << x.ff << " " << x.dd;
}

const int N = 1e6 + 1;
int c[2][N];
pii where[N];

int par[N];

int find(int x) {
    return par[x] == x ? x : x = find(par[x]);
}

bool unio(int x, int y) {
    x = find(x);
    y = find(y);
    if (y < x)
        swap(x, y);
    if (x == y)
        return false;
    par[y] = x;
    return true;
}

int main(void) {
    int n, k;
    scanf("%d%d", &n, &k);
    lld ile[k + 1];
    memset(ile, 0, (k + 1) << 3);
    For (j, 0, 2)
    For (i, 0, n) {
        scanf("%d", &c[j][i]);
        where[c[j][i]] = mp(j, i);
    }
    
    For (l, 1, 2 * n + 1) {
        int glob = 0;
        For (j, l, 2 * n + 1)
            par[j] = j;
        For (i, l, 2 * n + 1) {
            glob++;
            int wier = where[i].ff, kol = where[i].dd;
            
            int cand = c[wier ^ 1][kol];
            if (cand < i && cand >= l)
                glob -= unio(i, cand);
            
            cand = c[wier][(kol - 1 + n) % n];
            if (cand < i && cand >= l)
                glob -= unio(i, cand);

            cand = c[wier][(kol + 1) % n];
            if (cand < i && cand >= l)
                glob -= unio(i, cand);

            //cout << l << " " << i << " " << glob << endl;
            if (glob <= k)
                ++ile[glob];
        }
    }
    
    For (i, 1, k + 1)
        printf("%lld ", ile[i]);
}