#include <stdio.h> #include <vector> #include <algorithm> const int C=300001, D = 1001, MD=201, K=12; //Rozmiar sekwa < DD using namespace std; struct event{ int place; std::pair<int, int> limits; int sgn; }; void parse_event(vector<event>& events, int surrounded, pair<int, int> walls, int n){ int small_wall = min(walls.first, walls.second), large_wall = max(walls.first, walls.second); if (surrounded < small_wall){ events.push_back({1, {surrounded, small_wall-1}, 1}); events.push_back({surrounded+1, {surrounded, small_wall-1}, -1}); } else if (surrounded > large_wall){ events.push_back({large_wall+1, {surrounded, n}, 1}); events.push_back({surrounded+1, {surrounded, n}, -1}); } else{ events.push_back({small_wall+1, {surrounded, large_wall-1}, 1}); events.push_back({surrounded+1, {surrounded, large_wall-1}, -1}); } } void parse_double_event(vector<event>& events, pair<int, int> surrounded, pair<int, int> walls, int n){ int small_wall = min(walls.first, walls.second), large_wall = max(walls.first, walls.second); int small_surrounded = min(surrounded.first, surrounded.second), large_surrounded = max(surrounded.first, surrounded.second); if (large_surrounded < small_wall){ events.push_back({1, {large_surrounded, small_wall-1}, 1}); events.push_back({small_surrounded+1, {large_surrounded, small_wall-1}, -1}); } if (small_surrounded > large_wall){ events.push_back({large_wall+1, {large_surrounded, n}, 1}); events.push_back({small_surrounded+1, {large_surrounded, n}, -1}); } else if (small_surrounded > small_wall && large_surrounded < large_wall){ events.push_back({small_wall+1, {large_surrounded, large_wall-1}, 1}); events.push_back({small_surrounded+1, {large_surrounded, large_wall-1}, -1}); } //Czwarty stan zostawiony w piachu intencjonalnie } int element[2][C]; vector<event> events; //{event, sgn}, seq_limits int sqrt_index[C], res[D][K], counter[D], sorted_seq[D][MD+5], unsorted_seq[D][MD+5], k_values[D][K], amount_of_k_values[D]; pair<int, int> indexing[D]; void linear_batch_operations(int index, event parsed_event, int start, int end, int k){ for (int cur_pos = start; cur_pos <= end; cur_pos++) unsorted_seq[index][cur_pos] += parsed_event.sgn; int ln = indexing[index].second - indexing[index].first + 1; for (int j=0; j<ln; j++) unsorted_seq[index][j] += counter[index]; counter[index] = 0; for (int j=0; j<ln; j++) sorted_seq[index][j] = unsorted_seq[index][j]; sort(sorted_seq[index], sorted_seq[index]+ln); for (int j=0; j<=k; j++) res[index][j] = 0; for (int j=0; j<ln; j++){ if (unsorted_seq[index][j] <= k) res[index][unsorted_seq[index][j]]++; } int j=1, i; k_values[index][0] = 0; for (i=1; i<ln && j<k+2; i++){ if (sorted_seq[index][i] != sorted_seq[index][i-1]){ k_values[index][j] = i; j++; } //if (j < k+2) k_values[index][j] = ln, j++; } amount_of_k_values[index] = j; } int final_res[K]; int main(){ int n, k; scanf ("%d %d", &n, &k); for (int row=0; row<2; row++){ for (int column=0; column<n; column++){ scanf ("%d", &element[row][column]); } } for (int column=0; column<n; column++){ int prev_column = ((column-1) + n)%n; parse_event(events, element[0][column], {element[0][prev_column], element[1][column]}, 2*n); parse_event(events, element[1][column], {element[1][prev_column], element[0][column]}, 2*n); parse_double_event(events, {element[0][column], element[1][column]}, {element[0][prev_column], element[1][prev_column]}, 2*n); } sort(events.begin(), events.end(), [](event& a, event& b){return a.place < b.place;}); for (int i=1; i<=2*n; i++) sqrt_index[i] = i/MD; for (int i = 2*n+1; i <= 2*n+MD; i++) sqrt_index[i] = -1; indexing[0] = {1, min(MD-1, 2*n)}; for (int i=MD; i<=2*n; i+=MD) indexing[i/MD] = {i, min(i+MD-1, 2*n)}; int cur_event = 0; int last_sqrt_index = (2*n)/MD; for (int index = 1; index <= last_sqrt_index; index++){ int ln = indexing[index].second - indexing[index].first + 1; for (int j=0; j<ln; j++){ if (unsorted_seq[index][j] <= k) res[index][unsorted_seq[index][j]]++; } int j=1; k_values[index][0] = 0; for (int i=1; i<ln && j<k+2; i++){ if (sorted_seq[index][i] != sorted_seq[index][i-1]){ k_values[index][j] = i; j++; } } amount_of_k_values[index] = j; } for (int i=1; i<=2*n; i++){ //printf ("%d %d %d %d\n", cur_event, events.size(), events[cur_event].place, i); for (; cur_event < events.size() && events[cur_event].place == i; cur_event++){ event parsed_event = events[cur_event]; //printf ("Event description: %d {%d %d} %d\n", parsed_event.place, parsed_event.limits.first, parsed_event.limits.second, parsed_event.sgn); int start = parsed_event.limits.first; int end = parsed_event.limits.second; int start_sqrt_index = sqrt_index[start]; int end_sqrt_index = sqrt_index[end]; if (start > end) continue; //counter, sgn, resorta, valid res linear_batch_operations(start_sqrt_index, parsed_event, start - indexing[start_sqrt_index].first, min((start_sqrt_index+1)*MD-1, end) - indexing[start_sqrt_index].first, k); if (start_sqrt_index == end_sqrt_index) continue; for (int index = start_sqrt_index+1; index != end_sqrt_index; index++){ counter[index] += parsed_event.sgn; if (parsed_event.sgn == -1){ for (int j=0; j<k; j++) res[index][j] = res[index][j+1]; res[index][k] = 0; for (int j=amount_of_k_values[index]-2; j>=0; j--){ if (sorted_seq[index][k_values[index][j]] + counter[index] == k){ res[index][k] = k_values[index][j+1] - k_values[index][j]; break; } } } else{ for (int j=k; j>=1; j--) res[index][j] = res[index][j-1]; res[index][0] = 0; } } linear_batch_operations(end_sqrt_index, parsed_event, 0, end - indexing[end_sqrt_index].first, k); } int start_sqrt_index = sqrt_index[i]; int position_in_batch = i - indexing[start_sqrt_index].first; int ln = indexing[start_sqrt_index].second - indexing[start_sqrt_index].first + 1; for (int cur_pos = position_in_batch; cur_pos < ln; cur_pos++){ int value = unsorted_seq[start_sqrt_index][cur_pos] + counter[start_sqrt_index]; if (value <= k && value != 0) final_res[value]++; else if (value == 0) final_res[1]++; } for (int index = start_sqrt_index+1; index <= last_sqrt_index; index++){ for (int connecteds = 1; connecteds <= k; connecteds++) final_res[connecteds] += res[index][connecteds]; final_res[1] += res[index][0]; } } for (int i=1; i <= k; i++) printf ("%d ", final_res[i]); printf ("\n"); return 0;}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | #include <stdio.h> #include <vector> #include <algorithm> const int C=300001, D = 1001, MD=201, K=12; //Rozmiar sekwa < DD using namespace std; struct event{ int place; std::pair<int, int> limits; int sgn; }; void parse_event(vector<event>& events, int surrounded, pair<int, int> walls, int n){ int small_wall = min(walls.first, walls.second), large_wall = max(walls.first, walls.second); if (surrounded < small_wall){ events.push_back({1, {surrounded, small_wall-1}, 1}); events.push_back({surrounded+1, {surrounded, small_wall-1}, -1}); } else if (surrounded > large_wall){ events.push_back({large_wall+1, {surrounded, n}, 1}); events.push_back({surrounded+1, {surrounded, n}, -1}); } else{ events.push_back({small_wall+1, {surrounded, large_wall-1}, 1}); events.push_back({surrounded+1, {surrounded, large_wall-1}, -1}); } } void parse_double_event(vector<event>& events, pair<int, int> surrounded, pair<int, int> walls, int n){ int small_wall = min(walls.first, walls.second), large_wall = max(walls.first, walls.second); int small_surrounded = min(surrounded.first, surrounded.second), large_surrounded = max(surrounded.first, surrounded.second); if (large_surrounded < small_wall){ events.push_back({1, {large_surrounded, small_wall-1}, 1}); events.push_back({small_surrounded+1, {large_surrounded, small_wall-1}, -1}); } if (small_surrounded > large_wall){ events.push_back({large_wall+1, {large_surrounded, n}, 1}); events.push_back({small_surrounded+1, {large_surrounded, n}, -1}); } else if (small_surrounded > small_wall && large_surrounded < large_wall){ events.push_back({small_wall+1, {large_surrounded, large_wall-1}, 1}); events.push_back({small_surrounded+1, {large_surrounded, large_wall-1}, -1}); } //Czwarty stan zostawiony w piachu intencjonalnie } int element[2][C]; vector<event> events; //{event, sgn}, seq_limits int sqrt_index[C], res[D][K], counter[D], sorted_seq[D][MD+5], unsorted_seq[D][MD+5], k_values[D][K], amount_of_k_values[D]; pair<int, int> indexing[D]; void linear_batch_operations(int index, event parsed_event, int start, int end, int k){ for (int cur_pos = start; cur_pos <= end; cur_pos++) unsorted_seq[index][cur_pos] += parsed_event.sgn; int ln = indexing[index].second - indexing[index].first + 1; for (int j=0; j<ln; j++) unsorted_seq[index][j] += counter[index]; counter[index] = 0; for (int j=0; j<ln; j++) sorted_seq[index][j] = unsorted_seq[index][j]; sort(sorted_seq[index], sorted_seq[index]+ln); for (int j=0; j<=k; j++) res[index][j] = 0; for (int j=0; j<ln; j++){ if (unsorted_seq[index][j] <= k) res[index][unsorted_seq[index][j]]++; } int j=1, i; k_values[index][0] = 0; for (i=1; i<ln && j<k+2; i++){ if (sorted_seq[index][i] != sorted_seq[index][i-1]){ k_values[index][j] = i; j++; } //if (j < k+2) k_values[index][j] = ln, j++; } amount_of_k_values[index] = j; } int final_res[K]; int main(){ int n, k; scanf ("%d %d", &n, &k); for (int row=0; row<2; row++){ for (int column=0; column<n; column++){ scanf ("%d", &element[row][column]); } } for (int column=0; column<n; column++){ int prev_column = ((column-1) + n)%n; parse_event(events, element[0][column], {element[0][prev_column], element[1][column]}, 2*n); parse_event(events, element[1][column], {element[1][prev_column], element[0][column]}, 2*n); parse_double_event(events, {element[0][column], element[1][column]}, {element[0][prev_column], element[1][prev_column]}, 2*n); } sort(events.begin(), events.end(), [](event& a, event& b){return a.place < b.place;}); for (int i=1; i<=2*n; i++) sqrt_index[i] = i/MD; for (int i = 2*n+1; i <= 2*n+MD; i++) sqrt_index[i] = -1; indexing[0] = {1, min(MD-1, 2*n)}; for (int i=MD; i<=2*n; i+=MD) indexing[i/MD] = {i, min(i+MD-1, 2*n)}; int cur_event = 0; int last_sqrt_index = (2*n)/MD; for (int index = 1; index <= last_sqrt_index; index++){ int ln = indexing[index].second - indexing[index].first + 1; for (int j=0; j<ln; j++){ if (unsorted_seq[index][j] <= k) res[index][unsorted_seq[index][j]]++; } int j=1; k_values[index][0] = 0; for (int i=1; i<ln && j<k+2; i++){ if (sorted_seq[index][i] != sorted_seq[index][i-1]){ k_values[index][j] = i; j++; } } amount_of_k_values[index] = j; } for (int i=1; i<=2*n; i++){ //printf ("%d %d %d %d\n", cur_event, events.size(), events[cur_event].place, i); for (; cur_event < events.size() && events[cur_event].place == i; cur_event++){ event parsed_event = events[cur_event]; //printf ("Event description: %d {%d %d} %d\n", parsed_event.place, parsed_event.limits.first, parsed_event.limits.second, parsed_event.sgn); int start = parsed_event.limits.first; int end = parsed_event.limits.second; int start_sqrt_index = sqrt_index[start]; int end_sqrt_index = sqrt_index[end]; if (start > end) continue; //counter, sgn, resorta, valid res linear_batch_operations(start_sqrt_index, parsed_event, start - indexing[start_sqrt_index].first, min((start_sqrt_index+1)*MD-1, end) - indexing[start_sqrt_index].first, k); if (start_sqrt_index == end_sqrt_index) continue; for (int index = start_sqrt_index+1; index != end_sqrt_index; index++){ counter[index] += parsed_event.sgn; if (parsed_event.sgn == -1){ for (int j=0; j<k; j++) res[index][j] = res[index][j+1]; res[index][k] = 0; for (int j=amount_of_k_values[index]-2; j>=0; j--){ if (sorted_seq[index][k_values[index][j]] + counter[index] == k){ res[index][k] = k_values[index][j+1] - k_values[index][j]; break; } } } else{ for (int j=k; j>=1; j--) res[index][j] = res[index][j-1]; res[index][0] = 0; } } linear_batch_operations(end_sqrt_index, parsed_event, 0, end - indexing[end_sqrt_index].first, k); } int start_sqrt_index = sqrt_index[i]; int position_in_batch = i - indexing[start_sqrt_index].first; int ln = indexing[start_sqrt_index].second - indexing[start_sqrt_index].first + 1; for (int cur_pos = position_in_batch; cur_pos < ln; cur_pos++){ int value = unsorted_seq[start_sqrt_index][cur_pos] + counter[start_sqrt_index]; if (value <= k && value != 0) final_res[value]++; else if (value == 0) final_res[1]++; } for (int index = start_sqrt_index+1; index <= last_sqrt_index; index++){ for (int connecteds = 1; connecteds <= k; connecteds++) final_res[connecteds] += res[index][connecteds]; final_res[1] += res[index][0]; } } for (int i=1; i <= k; i++) printf ("%d ", final_res[i]); printf ("\n"); return 0;} |