#include <bits/stdc++.h> using namespace std; typedef unsigned long long lld; int n, m, k; const int sft[] { 0, 0, 1, -1 }; bool parity(vector<string> &v) { bool res = false; for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (v[i][j] == 'O') res ^= (i + j) & 1; return res; } bool empty(vector<string> &board, int x, int y) { return x >= 0 && y >= 0 && x < n && y < m && board[x][y] == '.'; } int calc_deg(vector<string> &board) { int deg = 0; for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (board[i][j] == 'O') for (int dx = 0; dx < 4; ++dx) if (empty(board, i+sft[dx], j+sft[3-dx])) ++deg; return deg; } lld memo[63][8]; void init_memo() { for (int i = 0; i < 63; ++i) { memo[i][0] = 1; if (i < 8) memo[i][i] = 1; for (int j = 1; j < min(8, i); ++j) memo[i][j] = memo[i-1][j] + memo[i-1][j-1]; } } lld newton(int n, int k) { return memo[n][k]; } // for every directed physical edge (pawn move) we have (nm-2 choose k-1) possible static pawns (2 tiles are reserved for the move) lld count_edges() { return (lld)((n-1)*m + n*(m-1)) * newton(n*m-2, k-1); } lld gcd(lld a, lld b) { while (b) { lld c = a % b; a = b; b = c; } return a; } void normalize(lld &a, lld &b) { lld d = gcd(a, b); a /= d; b /= d; } void divide(lld x, lld y, int precision = 15) { lld z = x/y; cout << z << '.'; x -= z*y; x *= 10; for (int i = 0; i < precision; ++i) { z = x/y; cout << z; x -= z*y; x *= 10; } cout << '\n'; } void calc(vector<string> &board) { lld E = count_edges(), deg = calc_deg(board); normalize(E, deg); divide(deg, E); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cin >> n >> m; vector<string> board(n), result(n); for (string &i : board) cin >> i; for (string &i : result) cin >> i; if (parity(board) != parity(result)) { cout << "0\n"; return 0; } for (string &s : board) for (char &c : s) k += (c == 'O'); init_memo(); calc(result); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #include <bits/stdc++.h> using namespace std; typedef unsigned long long lld; int n, m, k; const int sft[] { 0, 0, 1, -1 }; bool parity(vector<string> &v) { bool res = false; for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (v[i][j] == 'O') res ^= (i + j) & 1; return res; } bool empty(vector<string> &board, int x, int y) { return x >= 0 && y >= 0 && x < n && y < m && board[x][y] == '.'; } int calc_deg(vector<string> &board) { int deg = 0; for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (board[i][j] == 'O') for (int dx = 0; dx < 4; ++dx) if (empty(board, i+sft[dx], j+sft[3-dx])) ++deg; return deg; } lld memo[63][8]; void init_memo() { for (int i = 0; i < 63; ++i) { memo[i][0] = 1; if (i < 8) memo[i][i] = 1; for (int j = 1; j < min(8, i); ++j) memo[i][j] = memo[i-1][j] + memo[i-1][j-1]; } } lld newton(int n, int k) { return memo[n][k]; } // for every directed physical edge (pawn move) we have (nm-2 choose k-1) possible static pawns (2 tiles are reserved for the move) lld count_edges() { return (lld)((n-1)*m + n*(m-1)) * newton(n*m-2, k-1); } lld gcd(lld a, lld b) { while (b) { lld c = a % b; a = b; b = c; } return a; } void normalize(lld &a, lld &b) { lld d = gcd(a, b); a /= d; b /= d; } void divide(lld x, lld y, int precision = 15) { lld z = x/y; cout << z << '.'; x -= z*y; x *= 10; for (int i = 0; i < precision; ++i) { z = x/y; cout << z; x -= z*y; x *= 10; } cout << '\n'; } void calc(vector<string> &board) { lld E = count_edges(), deg = calc_deg(board); normalize(E, deg); divide(deg, E); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cin >> n >> m; vector<string> board(n), result(n); for (string &i : board) cin >> i; for (string &i : result) cin >> i; if (parity(board) != parity(result)) { cout << "0\n"; return 0; } for (string &s : board) for (char &c : s) k += (c == 'O'); init_memo(); calc(result); } |