#include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define st first #define nd second using namespace std; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename \ enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef LOCAL ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " using ll = long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<int>; using vll = vector<ll>; #ifdef LOCAL mt19937 rng(69); #else mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); #endif const int mod = 1000 * 1000 * 1000 + 7; const int kMaxVal = 5010; uniform_int_distribution uniform_mod_p(1, mod - 1); // Berlekamp-Massey z biblioteczki UW namespace Massey { void add_self(int & a, int b) { a += b; if(a >= mod) a -= mod; } void sub_self(int & a, int b) { a -= b; if(a < 0) a += mod; } int mul(int a, int b) { return (ll) a * b % mod; } int my_pow(int a, int b) { int r = 1; while(b) { if(b % 2) r = mul(r, a); a = mul(a, a); b /= 2; } return r; } int my_inv(int a) { return my_pow(a, mod - 2); } struct Massey { vector<int> start, coef; // 3 optional lines vector<vector<int>> powers; int memo_inv; bool ok; // Start here and write the next ~25 lines until "STOP" int L; // L == coef.size() <= start.size() Massey(vector<int> in) : ok{true} { // O(N^2) L = 0; const int N = in.size(); vector<int> C{1}, B{1}; for(int n = 0; n < N; ++n) { assert(0 <= in[n] && in[n] < mod); // invalid input B.insert(B.begin(), 0); int d = 0; for(int i = 0; i <= L; ++i) add_self(d, mul(C[i], in[n-i])); if(d == 0) continue; vector<int> T = C; C.resize(max(B.size(), C.size())); for(int i = 0; i < (int) B.size(); ++i) sub_self(C[i], mul(d, B[i])); if(2 * L <= n) { L = n + 1 - L; B = T; d = my_inv(d); for(int & x : B) x = mul(x, d); } } //~ cerr << "L = " << L << "\n"; if (2 * L > N - 2) { ok = false; } // === STOP === for(int i = 1; i < (int) C.size(); ++i) coef.push_back((mod - C[i]) % mod); assert((int) coef.size() == L); for(int i = 0; i < L; ++i) start.push_back(in[i]); while(!coef.empty() && !coef.back()) { coef.pop_back(); --L; } if(!coef.empty()) memo_inv = my_inv(coef.back()); powers.push_back(coef); } }; } /* namespace Massey */ inline void add_mod(int &a, int b) { a += b; if (a >= mod) { a -= mod; } } inline void sub_mod(int &a, int b) { a -= b; if (a < 0) { a += mod; } } inline int mul_mod(int a, int b) { return (int)((ll)a * b % mod); } inline int pow_mod(int a, int n) { int r = 1; while (n) { if (n & 1) { r = mul_mod(r, a); } n >>= 1; a = mul_mod(a, a); } return r; } inline int inv_mod(int a) { return pow_mod(a, mod - 2); } inline int div_mod(int a, int b) { return mul_mod(a, inv_mod(b)); } int input_n; int mat_n; vi elems; int phi[kMaxVal]; int gcds[kMaxVal][kMaxVal]; vi input_row_sums; template <typename T> std::vector<T> BasicSieve(T max_range) { std::vector<T> min_prime(max_range + 1); std::iota(min_prime.begin(), min_prime.end(), 0); for (T p = 2; p * p <= max_range; ++p) { if (min_prime[p] != p) { continue; } for (T i = p * p; i <= max_range; i += p) { if (min_prime[i] == i) { min_prime[i] = p; } } } return min_prime; } void Preproc() { auto sieve = BasicSieve(kMaxVal); for (int value = 1; value < kMaxVal; ++value) { int x = value, y = value; while (y > 1) { const int p = sieve[y]; x = (x / p) * (p - 1); while (y % p == 0) { y /= p; } } phi[value] = x; } for (int i = 0; i < kMaxVal; ++i) { gcds[0][i] = gcds[i][0] = i; } for (int i = 1; i < kMaxVal; ++i) { for (int j = 1; j < kMaxVal; ++j) { if (i >= j) { gcds[i][j] = gcds[i - j][i]; } else { gcds[i][j] = gcds[i][j - i]; } } } } ll x_vec_helper[kMaxVal]; ll y_vec_helper[kMaxVal]; void MultiplyVecByLaplacian(vi &in_vec) { memset(x_vec_helper, 0, sizeof(x_vec_helper)); memset(y_vec_helper, 0, sizeof(y_vec_helper)); for (int i = 0; i < SZ(in_vec); ++i) { x_vec_helper[elems[i]] += in_vec[i]; x_vec_helper[elems[i]] %= mod; } for (int d = 1; d < kMaxVal; ++d) { ll val = 0; for (int i = d; i < kMaxVal; i += d) { val += x_vec_helper[i]; } y_vec_helper[d] = (val * phi[d]) % mod; } memset(x_vec_helper, 0, sizeof(x_vec_helper)); for (int d = 1; d < kMaxVal; ++d) { for (int i = d; i < kMaxVal; i += d) { x_vec_helper[i] += y_vec_helper[d]; } } for (int i = 0; i < SZ(in_vec); ++i) { ll ans = x_vec_helper[elems[i]]; ans -= (ll)elems[i] * in_vec[i]; ans = -ans; ans += (ll)in_vec[i] * input_row_sums[i]; ans %= mod; if (ans < 0) { ans += mod; } in_vec[i] = ans; //~ ans[i] = x_vec_helper[elems[i]] % mod; //~ sub_mod(ans[i], mul_mod(elems[i], in_vec[i])); //~ if (ans[i]) { //~ ans[i] = mod - ans[i]; //~ } //~ add_mod(ans[i], mul_mod(in_vec[i], input_row_sums[i])); } //~ return ans; } vi GetRandomVector(int len) { vi ans(len); for (int i = 0; i < len; ++i) { ans[i] = uniform_mod_p(rng); } return ans; } int DotProd(const vi &a, const vi &b) { int ans = 0; for (int i = 0; i < SZ(a); ++i) { add_mod(ans, mul_mod(a[i], b[i])); } return ans; } int LaplacianDeterminant() { while (true) { const vi coef_vec = GetRandomVector(mat_n); const vi row_scale_vec = GetRandomVector(mat_n); vi cur_vec = GetRandomVector(mat_n); const int num_coefs = mat_n * 2 + 10; vi massey_coefs(num_coefs); for (int i = 0; i < num_coefs; ++i) { massey_coefs[i] = DotProd(coef_vec, cur_vec); MultiplyVecByLaplacian(cur_vec); for (int j = 0; j < mat_n; ++j) { cur_vec[j] = mul_mod(cur_vec[j], row_scale_vec[j]); } } Massey::Massey massey(massey_coefs); if (!massey.ok) { continue; } debug() << imie(massey.start) << imie(massey.coef); if (SZ(massey.coef) < mat_n) { continue; } int det = massey.coef.back(); for (int elem : row_scale_vec) { det = div_mod(det, elem); } if (mat_n % 2 == 0) { det = (mod - det) % mod; } return det; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); Preproc(); cin >> input_n; elems.resize(input_n); for (int &x : elems) { cin >> x; } if (input_n == 1) { cout << "1\n"; return 0; } mat_n = input_n - 1; input_row_sums.resize(input_n); for (int i = 0; i < input_n; ++i) { for (int j = 0; j < input_n; ++j) { if (i != j) { input_row_sums[i] += gcds[elems[i]][elems[j]]; //gcd(elems[i], elems[j]); } } } cout << LaplacianDeterminant() << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | #include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define st first #define nd second using namespace std; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename \ enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef LOCAL ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " using ll = long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<int>; using vll = vector<ll>; #ifdef LOCAL mt19937 rng(69); #else mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); #endif const int mod = 1000 * 1000 * 1000 + 7; const int kMaxVal = 5010; uniform_int_distribution uniform_mod_p(1, mod - 1); // Berlekamp-Massey z biblioteczki UW namespace Massey { void add_self(int & a, int b) { a += b; if(a >= mod) a -= mod; } void sub_self(int & a, int b) { a -= b; if(a < 0) a += mod; } int mul(int a, int b) { return (ll) a * b % mod; } int my_pow(int a, int b) { int r = 1; while(b) { if(b % 2) r = mul(r, a); a = mul(a, a); b /= 2; } return r; } int my_inv(int a) { return my_pow(a, mod - 2); } struct Massey { vector<int> start, coef; // 3 optional lines vector<vector<int>> powers; int memo_inv; bool ok; // Start here and write the next ~25 lines until "STOP" int L; // L == coef.size() <= start.size() Massey(vector<int> in) : ok{true} { // O(N^2) L = 0; const int N = in.size(); vector<int> C{1}, B{1}; for(int n = 0; n < N; ++n) { assert(0 <= in[n] && in[n] < mod); // invalid input B.insert(B.begin(), 0); int d = 0; for(int i = 0; i <= L; ++i) add_self(d, mul(C[i], in[n-i])); if(d == 0) continue; vector<int> T = C; C.resize(max(B.size(), C.size())); for(int i = 0; i < (int) B.size(); ++i) sub_self(C[i], mul(d, B[i])); if(2 * L <= n) { L = n + 1 - L; B = T; d = my_inv(d); for(int & x : B) x = mul(x, d); } } //~ cerr << "L = " << L << "\n"; if (2 * L > N - 2) { ok = false; } // === STOP === for(int i = 1; i < (int) C.size(); ++i) coef.push_back((mod - C[i]) % mod); assert((int) coef.size() == L); for(int i = 0; i < L; ++i) start.push_back(in[i]); while(!coef.empty() && !coef.back()) { coef.pop_back(); --L; } if(!coef.empty()) memo_inv = my_inv(coef.back()); powers.push_back(coef); } }; } /* namespace Massey */ inline void add_mod(int &a, int b) { a += b; if (a >= mod) { a -= mod; } } inline void sub_mod(int &a, int b) { a -= b; if (a < 0) { a += mod; } } inline int mul_mod(int a, int b) { return (int)((ll)a * b % mod); } inline int pow_mod(int a, int n) { int r = 1; while (n) { if (n & 1) { r = mul_mod(r, a); } n >>= 1; a = mul_mod(a, a); } return r; } inline int inv_mod(int a) { return pow_mod(a, mod - 2); } inline int div_mod(int a, int b) { return mul_mod(a, inv_mod(b)); } int input_n; int mat_n; vi elems; int phi[kMaxVal]; int gcds[kMaxVal][kMaxVal]; vi input_row_sums; template <typename T> std::vector<T> BasicSieve(T max_range) { std::vector<T> min_prime(max_range + 1); std::iota(min_prime.begin(), min_prime.end(), 0); for (T p = 2; p * p <= max_range; ++p) { if (min_prime[p] != p) { continue; } for (T i = p * p; i <= max_range; i += p) { if (min_prime[i] == i) { min_prime[i] = p; } } } return min_prime; } void Preproc() { auto sieve = BasicSieve(kMaxVal); for (int value = 1; value < kMaxVal; ++value) { int x = value, y = value; while (y > 1) { const int p = sieve[y]; x = (x / p) * (p - 1); while (y % p == 0) { y /= p; } } phi[value] = x; } for (int i = 0; i < kMaxVal; ++i) { gcds[0][i] = gcds[i][0] = i; } for (int i = 1; i < kMaxVal; ++i) { for (int j = 1; j < kMaxVal; ++j) { if (i >= j) { gcds[i][j] = gcds[i - j][i]; } else { gcds[i][j] = gcds[i][j - i]; } } } } ll x_vec_helper[kMaxVal]; ll y_vec_helper[kMaxVal]; void MultiplyVecByLaplacian(vi &in_vec) { memset(x_vec_helper, 0, sizeof(x_vec_helper)); memset(y_vec_helper, 0, sizeof(y_vec_helper)); for (int i = 0; i < SZ(in_vec); ++i) { x_vec_helper[elems[i]] += in_vec[i]; x_vec_helper[elems[i]] %= mod; } for (int d = 1; d < kMaxVal; ++d) { ll val = 0; for (int i = d; i < kMaxVal; i += d) { val += x_vec_helper[i]; } y_vec_helper[d] = (val * phi[d]) % mod; } memset(x_vec_helper, 0, sizeof(x_vec_helper)); for (int d = 1; d < kMaxVal; ++d) { for (int i = d; i < kMaxVal; i += d) { x_vec_helper[i] += y_vec_helper[d]; } } for (int i = 0; i < SZ(in_vec); ++i) { ll ans = x_vec_helper[elems[i]]; ans -= (ll)elems[i] * in_vec[i]; ans = -ans; ans += (ll)in_vec[i] * input_row_sums[i]; ans %= mod; if (ans < 0) { ans += mod; } in_vec[i] = ans; //~ ans[i] = x_vec_helper[elems[i]] % mod; //~ sub_mod(ans[i], mul_mod(elems[i], in_vec[i])); //~ if (ans[i]) { //~ ans[i] = mod - ans[i]; //~ } //~ add_mod(ans[i], mul_mod(in_vec[i], input_row_sums[i])); } //~ return ans; } vi GetRandomVector(int len) { vi ans(len); for (int i = 0; i < len; ++i) { ans[i] = uniform_mod_p(rng); } return ans; } int DotProd(const vi &a, const vi &b) { int ans = 0; for (int i = 0; i < SZ(a); ++i) { add_mod(ans, mul_mod(a[i], b[i])); } return ans; } int LaplacianDeterminant() { while (true) { const vi coef_vec = GetRandomVector(mat_n); const vi row_scale_vec = GetRandomVector(mat_n); vi cur_vec = GetRandomVector(mat_n); const int num_coefs = mat_n * 2 + 10; vi massey_coefs(num_coefs); for (int i = 0; i < num_coefs; ++i) { massey_coefs[i] = DotProd(coef_vec, cur_vec); MultiplyVecByLaplacian(cur_vec); for (int j = 0; j < mat_n; ++j) { cur_vec[j] = mul_mod(cur_vec[j], row_scale_vec[j]); } } Massey::Massey massey(massey_coefs); if (!massey.ok) { continue; } debug() << imie(massey.start) << imie(massey.coef); if (SZ(massey.coef) < mat_n) { continue; } int det = massey.coef.back(); for (int elem : row_scale_vec) { det = div_mod(det, elem); } if (mat_n % 2 == 0) { det = (mod - det) % mod; } return det; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); Preproc(); cin >> input_n; elems.resize(input_n); for (int &x : elems) { cin >> x; } if (input_n == 1) { cout << "1\n"; return 0; } mat_n = input_n - 1; input_row_sums.resize(input_n); for (int i = 0; i < input_n; ++i) { for (int j = 0; j < input_n; ++j) { if (i != j) { input_row_sums[i] += gcds[elems[i]][elems[j]]; //gcd(elems[i], elems[j]); } } } cout << LaplacianDeterminant() << "\n"; } |