import numpy as np def gcd(a, b): while b != 0: r = a % b a = b b = r return a class Solver: def __init__(self): self.n = 0 self.v = [] self.d = [] self.ec = None def read_data(self): self.n = int(input().strip()) v = [0] * self.n d = [0] * self.n inp = input().strip().split(' ') for i in range(self.n): v[i] = int(inp[i]) self.v = v self.d = d # ec = np.eye(self.n) ec = np.full(shape=[self.n, self.n], fill_value=0, dtype=int) for i in range(self.n): ec[i][i] = 0 # no loops for j in range(i+1, self.n): ec[i][j] = gcd(v[i], v[j]) ec[j][i] = ec[i][j] d[i] += ec[i][j] d[j] += ec[i][j] self.ec = ec def solve(self): n = self.n d = self.d ec = self.ec # a = np.eye(self.n-1) a = np.full(shape=[n-1,n-1], fill_value=0, dtype=int) for i in range(n - 1): for j in range(n - 1): if i == j: a[i][j] = d[i] else: a[i][j] = -ec[i][j] # print(a) print(round(np.linalg.det(a)) % 1000000007) s = Solver() s.read_data() s.solve()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | import numpy as np def gcd(a, b): while b != 0: r = a % b a = b b = r return a class Solver: def __init__(self): self.n = 0 self.v = [] self.d = [] self.ec = None def read_data(self): self.n = int(input().strip()) v = [0] * self.n d = [0] * self.n inp = input().strip().split(' ') for i in range(self.n): v[i] = int(inp[i]) self.v = v self.d = d # ec = np.eye(self.n) ec = np.full(shape=[self.n, self.n], fill_value=0, dtype=int) for i in range(self.n): ec[i][i] = 0 # no loops for j in range(i+1, self.n): ec[i][j] = gcd(v[i], v[j]) ec[j][i] = ec[i][j] d[i] += ec[i][j] d[j] += ec[i][j] self.ec = ec def solve(self): n = self.n d = self.d ec = self.ec # a = np.eye(self.n-1) a = np.full(shape=[n-1,n-1], fill_value=0, dtype=int) for i in range(n - 1): for j in range(n - 1): if i == j: a[i][j] = d[i] else: a[i][j] = -ec[i][j] # print(a) print(round(np.linalg.det(a)) % 1000000007) s = Solver() s.read_data() s.solve() |